
6. Deep Neural Networks and Genetic Algorithms

𝑐

𝑐

Summary: In chapter six we will study recommendation algorithms based on artificial neural
networks. In particular, we will describe the Multi-layer Perceptron - (MLP), the basic, feed-
forward, multi-layered neural network with many layers of analysis. We will also describe Convo-
lutional Neural Networks, which are particularly effective in image processing and recognition and,
since an image is usually represented by a two-dimensional matrix, they can - by analogy - also be
applied to recommender systems, since they use a user-item rating matrix. Moreover, we will de-
scribe Recurrent Neural Networks, which allow the recommendation system to ”forget” very old
interactions of the user with items, by using the LSTM and GRU building blocks, and is therefore
useful for item recommendations whose life span is relatively short (e.g., news articles). Finally, we
will describe recommendation systems based on genetic algorithms, which simulate the natural
phenomenon of evolution and natural selection: the search for the appropriate neighborhood
of the target user, thus, starts with a number of random neighboring users based on a set of initial
assumptions. On this initial population, and once its members have been evaluated by means of a
fitness function, the new generation of neighbors is generated through reproduction operations
(e.g. crossover, mutation, etc.).

Required knowledge: Prior study of Chapter 2 and Chapter 5 is recommended, because algo-
rithms (item-based CF and UV-decomposition) will be implemented with neural networks in this
chapter.

6.1 The structure of a Perceptron

6.1.1 Single-layer Perceptron

In the human brain, a nerve synapse is a link that allows a neuron (or nerve cell) to transmit an elec-
trical or chemical signal to another neuron, causing a change in the state of the latter. In biological
systems, learning occurs through an increase in the strength (e.g. thickness) of synapses as a result
of their being strengthened by the repetition of the same external stimuli.
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140 6.1. The structure of a Perceptron

Artificial neural networks now simulate the human brain by using neurons (or nodes) that are
connected to each other through links called synapses. The most basic computational structure in
artificial neural networks is the perceptron, which contains a set of input nodes and an output node.
The architectural structure of a perceptron is shown in Figure 6.1.

Figure 6.1: Example of a Single-Layer Perceptron using bias.

So perceptron takes a set of inputs, performs some mathematical calculations and gives an output.
The incoming signals are represented as an input vector:

x = [𝑥1, 𝑥2,… , 𝑥𝑛] , 𝑥𝑖 ∈ ℝ.

Neurons belonging to different layers of a neural network are connected to each other via
appropriate links represented by using directed edges of a graph. The strength of the links is expressed
using weights on the directed edges of the graph. The weights on the directed edges connecting a
neuron of one level to a neuron of the next level are grouped into a weights’ vector :

w = [𝑤1, 𝑤2,… ,𝑤𝑛]
𝑇 , 𝑤𝑖 ∈ ℝ.

The first computation performed by a perceptron is the weighted sum. More precisely, it multi-
plies each input by its corresponding weight. Then all the inputs are summed and a term called bias
is added, as shown in the center of Figure 6.1 and is modeled as an inner product:

z =
𝑛


𝑖=1

𝑤𝑖𝑥𝑖 = w𝑇x + 𝑏

The second calculation performed by the neuron is the activation function. This is done by taking the
output of the weighted sum and passing it through an activation function 𝑓 , as shown in the right
part of Figure 6.1.

𝑧1 = 𝑓(𝑧) = 𝑓 ⒧w𝑇x + 𝑏⒭ = 𝑓
⎛⎜⎜⎜⎜⎝

𝑁


𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏
⎞⎟⎟⎟⎟⎠
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Choosing the appropriate activation function 𝑓 is a critical part of neural network design. We
emphasize that the most basic activation function 𝑓(⋅) is the identity activation function. However,
it does not provide non-linearity, and only works for cases where the data can be separated into two
groups using a simple line: 𝑓(𝑥) = 𝑥

The linear/identity activation function is often used at the output node of the neural network
when our prediction is about a real number. For example, a recommendation system is trying to
predict the rating a user would give to an item. In this case, the prediction of the rating is a variable
expressed in terms of a real number, and therefore it makes sense to use the linear (identity) activation
function. However, the resulting neural network algorithm is the same as least squares regression.

We note here that the main advantage of neural networks over other predicting methods is the
cases in which the former use activation functions that can express non-linear correlations between
data, especially in situations where the data are not separated into two groups using a simple line.
Such classical, non-linear activation functions are the sigmoid function and the tangent function (tanh

function):

𝑓(𝑥) = 1
1+𝑒−𝑥 (sigmoid function)

𝑓(𝑥) = 𝑒2𝑥−1
𝑒2𝑥+1 (tanh function)

We emphasize that most basic machine learning models can be implemented with simple neural
network architectures. Below we will “model” two traditional machine learning techniques (linear
regression and UV-decomposition) as neural network architectures, in order to demonstrate how deep

learning can be a special case of traditional machine learning.

Example 6.1 Given the user-item rating matrix, which is shown in Figure 6.2, we are asked
to predict the rating of user𝑈4 for item 𝐼4 using a single-layer perceptron. The neural network
architecture to be used to predict the rating using a single-layer perceptron is shown in Figure
6.3. The aforementioned neural network (see Figure 6.3) models the item-based collaborative

filtering algorithm, which was described in details in Chapter 2.

𝐼1 𝐼2 𝐼3 𝐼4
𝑈1 4 1 1 4
𝑈2 1 4 2 0
𝑈3 2 1 4 5
𝑈4 1 4 1 ?

Figure 6.2: User-Item Rating matrix A (4 × 4).
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Figure 6.3: Example of a Single-Layer Perceptron that implements Item-based Collaborative Fil-

tering algorithm (described in Chapter 2) on the data of Example 6.1
.

More specifically, the neural network in Figure 6.3 has 𝑚 − 1 input nodes {𝐼1, 𝐼2, 𝐼3} where 𝑚 is
the number of items in Example 6.1. The ratings of the input items are used to predict the rating of
the remaining fourth item 𝐼4, as shown in Figure 6.3. The variable ̂𝑦 represents the rating predicted
by the neural network for the items, while the variable 𝑦 represents the actual ratings of the items.
The calculation of the predicted rating of an item ̂𝑦 is computed as the inner product of the input
vector X and the weight vector W of the neural network as follows:

̂𝑦 =W𝑇 ⋅ X

As shown in the output node of Figure 6.3, the activation function of the neural network is the linear

or identity function 𝑓(𝑥) = 𝑥. Also, (see Figure 6.3) the objective of the loss function 𝐿 is to minimize
the difference or else the error e between the actual and predicted item ratings:

𝐿 = 𝑒2 = argmin
W


(X,𝑦)∈𝒟

(𝑦 − ̂𝑦)2

where (X, 𝑦) is the pair of training data 𝒟 introduced into the neural network.
The difference between actual and predicted ratings is used to update the weight vector W in

a manner similar to the optimization procedure followed in least squares regression, which was de-
scribed in detail in the previous section. In particular, the optimization of the parameters of the
weight vector W is equivalent to the updates based on the gradient descent method as applied in
least-squares regression. This method (gradient descent) finds the direction in which the weight vec-
tor W should be changed in order to minimize the loss function 𝐿. Note that the updates of the
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gradient descent method, also known as the delta rule, are determined by computing the partial
derivative of the loss function 𝑒2 with respect to the weight vector W. Note that the set of partial
derivatives relating to all variables of the loss function 𝑒2 is called the gradient. Therefore, whenever
a pair of training data (X, 𝑦) is introduced into the neural network, the Gradient of the loss function

can be calculated as follows: 𝜕𝑒2

𝜕W = −2 ⋅ 𝑒 ⋅ Χ

Moving each time in the opposite direction of the above computed partial derivative, we can
minimize the loss function 𝑒2 with the following update rule:

W𝑡+1 =W𝑡 + 2 ⋅ 𝜂 ⋅ 𝑒 ⋅ X

where 𝜂 ∈ (0, 1] is the learning rate and𝑊𝑡 is the value of the weight vector at the 𝑡-th iteration
of the algorithm. As shown in Figure 6.3 at the input of the neural network we gradually introduce
into the input vector X all the observed ratings of the items {𝐼1, 𝐼2, 𝐼3} in Figure 6.2, i.e., the following
triplets:

{4, 1, 1}, {1, 4, 2}, {2, 1, 4} και {1, 4, 1}.

The neural network in Figure 6.3 is used to predict the rating of 𝑈4 on item 𝐼4. In particular,
after inserting a triplet of training data into the input of the neural network the items {𝐼1, 𝐼2, 𝐼3}
the neural network predicts a rating for the item 𝐼4. Next, we compare the rating predicted by the
neural network for item 𝐼4 with the actual rating of the item, which is found in the 4th column of the
user-item rating matrix𝐴 (see Figure 6.2). Thus, the predictions of the ratings obtained by the neural
network are used to generate a new approximation user-item rating matrix ̂𝐴, which is compared
with the original matrix𝐴. If there is a difference in their ratings, then we correct the weights’ vector
W accordingly using the back-propagation technique, which propagates backwards (from the output
of the neural to its input) those values that minimize the sum of squared errors between the actual
and predicted ratings. This approach is repeated iteratively until the values of the matrix Â =W𝑇 ⋅X
converge, so that they do not change any further. Note that each iteration requires the insertion of 𝑛
of training data (𝑛 triplets) into the neural network where 𝑛 is the number of users. In our example,
in each iteration 4 triplets are inserted into the neural network, given that we have 4 users who have
rated the items {𝐼1, 𝐼2, 𝐼3} whose ratings are used to predict the rating of item 𝐼4.

The main disadvantage of perceptron is that it cannot split non-linearly separable data since it
consists of only the input node layer and a single output node. To understand better the above
disadvantage we will present the example below:

Example 6.2 Suppose that we are given the two-input perceptron of Figure 6.4 that imple-
ments the logical operation OR using as activation function the step function with threshold

𝑡 = 0. The input values of perceptron may be 0 (false) or 1 (true). For example, if the pair of
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input values of perceptron is {𝑥1 = 0, 𝑥2 = 1}, then its weighted sum is:

𝑧 = 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑏 = 2 ∗ 0 + 2 ∗ 1 − 1 = 1

and the output of its step function is 𝑓(𝑧) = 1, because 𝑧 > 0. Therefore, the output of
the perceptron is 1 (True), which is consistent with the truth table of the logical operation
OR as shown in the right-hand side of Figure 6.4. Alternatively, if the pair of input values of
perceptron is {𝑥1 = 0, 𝑥2 = 0}, then its weighted sum is:

𝑧 = 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑏 = 2 ∗ 0 + 2 ∗ 0 − 1 = −1

and the output of its step activation function is: 𝑓(𝑧) = −1, because 𝑧 < 0. Therefore, the output
of perceptron is -1 (False), which is consistent with the truth table of the logical operation OR

as shown in the right part of Figure 6.4.

Figure 6.4: Example of a two-input perceptron implementing the logical operation OR.

It should be emphasized here that the perceptron of Figure 6.4 can distinguish the points of a
Cartesian x-y axis system between two hemispaces separated by a hyperplane and modulated by the
𝑥 values of the inputs of perceptron for which the following equality holds:

𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑏 = 0

Thus, as shown by the blue split line in Fig. 6.5(a), the perceptron of example 6.2 splits the space of
the Cartesian x-y axis system into two hemispaces with the following linear equation:

2 ∗ 𝑥1 + 2 ∗ 𝑥2 − 1 = 0

We emphasize, here, that the coefficients 𝑤1 = 2, and 𝑤2= 2 are the ones responsible for the
slope of the line, and b = -1 (bias) is its intercept with the Cartesian x-y axis system. Please note
that there are many different combinations of the above coefficients that make the separation of the
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inputs and output of the logical OR operation into false and true values. This is, after all, the main goal
that machine learning is trying to achieve: that is, to find the most appropriate weight coefficients
𝑤 and the appropriate bias coefficient 𝑏, to separate the data in an optimal way. However, there are
some problems that cannot be solved by a perceptron, and we give a relevant example below.

(a) (b)

Figure 6.5: Geometric representation of the inputs and outputs of the (a) OR and (b) XOR logical
operations.

Example 6.3 Suppose we are asked to implement the logical gate XOR using a perceptron,
which outputs 1 (True) if one of its inputs is 1 and the other input is 0, according to the
following truth table of the logical XOR operation:

Inputs Output
𝑥1 𝑥2 𝑥1 XOR 𝑥2
0 0 0
0 1 1
1 0 1
1 1 0

As shown in Figure 6.5(b), the input points of the logical operation XOR are impossible to
be separated by means of a straight line. For this reason, neural networks were developed
which have more intermediate layers of neurons to be able to separate the data, which will be
included either in convex solution regions or in non-convex solution regions, and which we will
discuss in detail in the next Section. a.

aConvex solution regions are those that do not have a straight line segment that has both ends inside the region
and some points outside. Otherwise the region is called non-convex
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6.1.2 Multi-layer Perceptron

In multi-layer neural networks, neurons are arranged in layers, of which those of input and output
are separated by another group of additional intermediate layers. These intermediate layers are
called hidden, because the computations performed in them are not visible to the user. Multi-layer
neural networks following this architecture are called Feed Forward Neural Networks, because the
successive layers feed each other in a forward direction, from input to output. The architecture of
these networks usually assumes that each node in one layer is connected to all nodes in the next
layer (Fully Dense Network).

The main advantage of multi-layer neural networks is that they provide the ability to compute
complex nonlinear functions which is not easy with other prediction methods (e.g. via linear regres-

sion). In particular, in the neurons of each different layer of such a neural network we can apply
alternative activation functions (e.g. Tanh, ReLU, Sigmoid, etc.) which allow to separate the data in a
non-linear way. Such a three-layer neural network with an additional hidden layer is illustrated in
Figure 6.6 based on the data in Example 6.1.

Figure 6.6: Example of a Multi-Layer Perceptron to implement UV-decomposition based on the data in
Example 6.1.

The neural network in Figure 6.6 implements the UV-decomposition algorithm, which we de-
scribed in detail in the previous chapter. Briefly, UV-decomposition expresses the original user-item
rating matrix 𝐴 of our current example as the product of two other 𝑈 and 𝑉 matrices as shown
below:

𝐴 ≈ 𝑈 ⋅ 𝑉𝑇 (6.1)
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More generally, if we have a table 𝐴 with 𝑛 rows and 𝑚 columns, we can compute two tables:
the table 𝑈 with 𝑛 rows and 𝑘 columns, and the table 𝑉 with 𝑚 rows and 𝑘 columns, so that the
product of the two tables 𝑈 ⋅ 𝑉Τ approximates the original table 𝐴. We emphasize that the variable
𝑘 controls the latent vector space and the size of the 𝑈 and 𝑉 matrices.

In the three-layer neural network of Figure 6.6 the 𝑈4x2 matrix expresses the latent vectors of
the users, and is represented by the weighted edges connecting the first layer (input) neurons to the
hidden layer. And the matrix 𝑉𝑇2x4 represents the latent vectors of the items, and is represented by
the directed edges with weights connecting the neurons of the hidden layer to the output layer, as
shown in Figure 6.6.

Henceforth, the 𝑈 and 𝑉𝑇 matrices will be called weight 𝑊1 and 𝑊2 matrices respectively, as
shown in Figure 6.6, in order to preserve the terminology of neural networks. Finally, notice that the
hidden layer neurons in Figure 6.6 are two, which means that we create a two-dimensional vector
space (𝑘=2) by keeping only the two prinipal components from 𝑈 and 𝑉𝑇 respectively.

In the neural network in Figure 6.6 we introduce the input vector 𝑋, which is one-hot encoded,
meaning that the input signal is equal to one (1) only for the target user, and zero (0) for the others.
Therefore, for user 𝑈4 the input vector 𝑋 is {0,0,0,1}, as shown in the left part of Figure 6.6. Then,
the Multi-layer Perceptron (MLP) of Figure 6.6 projects the input vector 𝑋 of user 𝑈4 in the two-
dimensional vector space of the hidden layer. More precisely, given the initial input vector 𝑋, the
hidden layer of MLP maps it to a hidden representation𝑍1 ∈ ℝ𝐾 via the following activation function:

Z1 = 𝑓 ⒧W𝑇
1 ∗ 𝑋 + b1⒭ (6.2)

where W1 ∈ ℝ𝑛×𝑘 a weight matrix and b1 ∈ 𝕂 the bias (bias).

At this point we note that given a MLP with 𝑙 layers, for each layer of MLP the input vector
is represented in another vector of the latent space of the next layer. The resulting latent vector

representation of the next layer is depicted as follows:

Z1 = 𝑓 ⒧W𝑇
1 ∗ 𝑋 + b1⒭

Z2 = 𝑓 ⒧W𝑇
2 ∗ 𝑍1 + b2⒭

⋯
Z𝑙 = 𝑓 ⒧W𝑇

𝑙 ∗ Z𝑙−1 + b𝑙⒭

(6.3)

In the MLP of Figure 6.6 we have only one hidden layer and therefore compute only two latent
vectors (Z1 expressing the user and Z2 expressing the item):

Z1 = 𝑓 ⒧W𝑇
1 ∗ 𝑋 + b1⒭

Z2 = 𝑓 ⒧W𝑇
2 ∗ 𝑍1 + b2⒭ (6.4)
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To address the problem of predicting a user’s rating over an item we use an objective function to
complete the missing values of the corresponding user-item rating matrix as follows:

min
u,v


𝑦𝑖𝑗∈ℛ

⒧𝑦𝑖𝑗 − u𝑖 ⋅ v𝑇𝑗 ⒭
2
+ 𝜆𝑢 ⋅ ‖u𝑖‖

2 + 𝜆𝑣 ⋅ ‖v𝑖‖
2 (6.5)

whereℛ is the set of observed ratings, 𝑦𝑖𝑗 is the rating of user 𝑖 for item 𝑗 , u𝑖 is the latent vector
of user 𝑖, and v𝑗 is the latent vector of item 𝑗 , while the parameters 𝜆𝑢 and 𝜆𝑣 ”normalize” the 𝐿2

norm of u and v.
Finally, the output of the neural network is the prediction of the ratings ̂𝑦 of a user for the

items. Next, we compare the ratings predicted by the neural network with the actual ratings of user
𝑈4, which are located in the 4th row of the user-item rating matrix 𝐴 as shown in Figure 6.2. In
conclusion, the predicted ratings obtained from the neural network are used to create a user-item
rating matrix ̂𝐴 = 𝑈 ⋅ 𝑉⊤, which is compared with the original user-item rating matrix 𝐴, and if
there is a difference, then we correct the weight vectors W1 and W2 accordingly. This approach is
repeated until the values of the predicted matrix ̂𝐴 = 𝑈 ⋅ 𝑉⊤ converge to the point where they no
longer vary. Therefore, the neural network shapes the weight vectors W1 and W2 accordingly so
that, by taking their inner product, it can predict the users’ ratings over the items. For example (see
in the center of Figure 6.6), we compute the rating of user 𝑈4 over the item 𝐼4 in the following way:

̂𝑦4,4 = 𝑤4,1 ⋅ 𝑤1,4 + 𝑤4,2 ⋅ 𝑤2,4 = 1.68 ⋅ 0.3 + (−0.52) ⋅ 2.33 = −0.71 (6.6)

Therefore, we predict that user 𝑈4 does not like item 𝐼4, which makes sense because user 𝑈4 has
similar ratings to user 𝑈2 as shown in Figure 6.2.

Since, now, the neural network in Figure 6.6 consists of a hidden layer of two neurons, it is there-
fore able to separate the data of our problem by means of an open, convex solution region. The hidden
two-neuron layer can therefore separate the Cartesian x-y axis plane with two intersecting lines de-
limiting the aforementioned region. However, if there were a third neuron in the hidden layer, then
there would be a third line which would delimit the x-y Cartesian axial plane more clearly, defin-
ing a closed, convex (triangular) solution region. Consequently, more complex networks of neurons,
organized in many layers, are capable of solving complex nonlinearly separable problems.

6.2 Convolutional Neural Networks

A Convolutional Neural Network - CNN is a multi-layer perceptron designed specifically to rec-
ognize objects from two-dimensional images. The pattern of connectivity between neurons in a CNN

is inspired by the organization of the visual cortex in organisms, which has a small region of cells that
are sensitive only to specific regions of the visual field. By analogy, in an artificial co-evolutionary
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layer of a CNN each neuron receives input only from a restricted region of the previous layer, which
is called the neuron’s receptive field. The existence of this field therefore allows local features to
be extracted from the image. However, once a feature has been extracted, its exact position is less
important since its approximate relative position to other features is preserved. The basic computa-
tional layers of a CNN are three as can be seen in Figure 6.7:

• The convolution layer uses a set of filters that detect the presence of specific features or patterns
present in the original image given input by generating multiple two dimensional feature maps,
within which individual neurons are constrained to share similar weight vectors.

• Each convolution layer is followed by a pooling layer by which the resolution of each feature map
is reduced based on an selected aggregation function (e.g., max pooling or average pooling). The
reason for the existence of this layer is the gradual reduction in the size of the dimensions, since
initially the input is a ”big picture”, while the output consists of only a few classes of icons of much
smaller dimensionality.

• In the end of a CNN, there are several fully connected layers having usually Relu as the activation
function, where each node in one layer is connected to all nodes in the next layer. The output layer
of a CNN, as can be seen in the right part of Figure 6.7 computes a probability for classifying an
image to a class (e.g, bird, dog, sunset, etc.), where all probabilities sum up to one.

Figure 6.7: Example of a Convolutional Neural Network.

CNNs have been successfully applied to various areas of data processing and analysis, such as Im-
age Processing and Natural Language Processing, achieving significant improvements in terms
of producing efficient and correct predictions (e.g. image and face recognition, voice and speech
recognition, etc.). The great effectiveness of CNN in particular in image processing and recognition
has led to its application also in Graph Data Analytics. Thus, Graph Convolutional Networks
- GCNs were developed, which concern the architecture of a neural network using the adjacency
matrix of a graph and its node features, and applies techniques to monitor the parallel evolution of
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links and node features of the graph. Since most recommendation systems are ”modeled” as bipartite
graphs, the GCN neural network has attracted the interest of the recommender systems scientific
community. The following section discusses the recommendation methods based on GCNs.

6.3 Recurrent Neural Networks

A recurrent neural network (RNN ) is distinguished from a feedforward neural network (e.g., MLP), by
the fact that it has at least one feedback loop. This is the reason, we call RNNs as feedback neural
networks. The feedback loop is a neural synapse (or otherwise, a directed edge), which is connected
not to a neuron in the next layer of the neural network, but to a neuron in the same or previous
layer. Based on the above characteristic, the main difference between a CNN or MLP and a RNN

is the ability of the latter to process time-dependent data (e.g. time series, word sequences, user
sessions, etc.).

The key element of a RNN is therefore that there is one input x𝑡 at each time 𝑡 and one hidden
state h𝑡 in RNN, which changes as new data instances arrive. Also, at each time point there is a
predicted output value ̂𝑦𝑡 . The term recurrent expresses the ability offered by the architecture of
RNNs to perform the same task for each item of a sequence with the result each time depending on
previous computations. Therefore, in this type of neural networks the information has a “memory”
influenced by the past.

An important characteristic of session-based recommender systems, is that we are mainly deal-
ing with anonymous sessions (user sessions) and therefore we are not able to create user profiles that
express their interactions with items over long periods of time, because these users have not sub-
scribed to the recommendation service. For this reason, the recommendations of these systems are
best modeled with feedback neural networks so that the system can “forget” past user interactions
with items.

Hidasi et al. [Hidasi et al., 2015] presented a recommendation system, known as GRU4Rec, which
is based on Gated Recurrent Units (GRUs). More specifically, a GRU is a simple neural network that
contains feedback connections in order to be able to ”forget”. That is, the algorithm GRU4Rec learns
when and how to update the hidden state of the GRU module to ”forget” past user interactions with
the items. In the same direction, several architectural improvements of the GRU4REC (see [Quad-
rana et al., 2017]) were proposed that led to an increase in the effectiveness of the original GRU4Rec

algorithm. Also, in the research papers of De Souza Pereira Moreira et al., [De Souza Pereira Moreira
et al., 2018] and [Moreira et al., 2019], a recommendation system called CHAMELEON was proposed,
which uses a CNN to exploit the content of articles and a RNN with Long and Short TermMemory
(LSTM) units for the sequential processing of usage data related to user interactions with items.
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6.4 Genetic Algorithms

The following subsection describes genetic algorithms and how they are applied to recommender
systems. Holland [Holland, 1992] was the first to present in his book “Adaptation in Natural and
Artificial Systems” the genetic algorithms, which are based on the mechanisms of (genetic) evolution
of organisms and in particular on natural selection. In particular, Holland and his colleagues were able
to design artificial software systems that exploited important mechanisms of the natural functions of
organisms, such as natural selection, crossover, and mutation in genetic algorithms. So genetic
algorithms follow a search process for the optimal solution, which is guided by a fitness function,
that evaluates a large number of different possible solutions. We emphasize that the optimal solution
search process uses random selection as a tool to lead to a high-quality solution. In general, we can
describe a genetic algorithm as a process of collecting qualitatively good structural components using
genetic-type operations. Therefore, the basic idea behind genetic algorithms is based on the fact that
good solutions are built from good structural components.

6.4.1 The Structural Components of Genetic Algorithms

Genetic algorithms consist of the following structural components:

• Chromosome Population.

In natural systems two or more chromosomes are combined to form the overall recipe in order
to satisfy the construction instructions and basic functions of organisms. Chromosomes in turn
are composed of genes that control specific building blocks of the organism, such as, for example,
the gene that controls the eye color of a mammal and is given the value “blue eyes”. On the
other hand, in artificial software systems, structural elements, such as chromosomes, can be defined
by a set of binary digits (i.e. 0 and 1). Also, genetic algorithms require the set of parameters of
an optimization problem to be encoded by a finite-length binary representation, which can be
considered a snapshot of a generic schema. The schema 1 ∗ ∗1, for example, represents all possible
binary encodings starting and ending with 1 and having length equal to 4. The asterisks in it
represent a value that can be 0 or 1. The following Figure 6.8 illustrates a general schema or mask

of a chromosome and some of its valid instances:

Therefore, solving problems using genetic algorithms involves creating an initial population of
chromosomes. As the genetic algorithm explores the space of possible solutions through the pro-
cess of evolution, the initial chromosomes, which are usually in different locations in the search
space, are combined to create the new generation of chromosomes. Thus, the genetic algorithm

can explore different regions of possible solutions by combining chromosomes through the ge-
netic operations of selection and crossover.

• Fitness function
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Figure 6.8: A simple example of chromosome instances which are built from a general schema.

In natural organisms, health is crucial and exists as an inherent property in order for the organism
to be able to survive epidemics and everything that threatens its existence, but also to achieve re-
production. By analogy, in artificial software systems, it is the fitness function, which is responsible
to decide about the further “life” of string creations or their “death” (extinction). In other words,
genetic algorithms require the existence of a function that assigns a degree of fitness to each chro-
mosome of the current population, so that it can be selected as a parent for the creation of the
chromosomes of the next population (the next generation). Thus, the fitness of a chromosome
depends on how well that chromosome solves the problem under consideration.

6.4.2 Genetic Operations

Genetic algorithms usually support the following basic genetic operations: (a) reproduction operator

or otherwise, parent selection (b) crossover operator, and (c) mutation factor. We describe them in
detail below:

• (a) Reproduction operator or Parental selection operator The reproduction process allows
the selection of the best chromosomes (based on a fitness function) from the current population,
which will produce the children/offspring of the next population. For this reason, the genetic

algorithm should strike a balance between exploitation of the current population by maximizing
the cumulative fitness of the chromosomes on the one hand, and exploration of the search space
by preserving the diversity of the chromosomes on the other hand. In fact, there is the following
trade-off between exploitation and exploration of the current population:

- A strict selection of the best chromosomes will reduce the diversity of the next population, which
will indeed lead to a fast convergence of the algorithm solutions (from the very first generations),
but will usually result in a good but not perfect solution given inefficient exploration.
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- A more elastic selection of the best chromosomes leads to a very slow time improvement of the
population due to inefficient exploitation.

As a result of the above trade-off, different parent selection strategies have been adopted, the
most important of which are listed below:

- Roulette selection : Roulette wheel Selection is a genetic operator used in genetic algorithms to
select potentially useful individuals (chromosomes) from the population to become the parents of
the next population. If 𝑓𝑖 is the fitness of individual 𝑖 in the population based on a fitness function

𝑓 , then its probability of selection is:

𝑝𝑖 =
𝑓𝑖

∑𝑁
𝑗=1 𝑓𝑗

where 𝑁 is the number of individuals in the population. The main problem of Roulette wheel

Selection, known as early convergence, is the limited exploration of individuals in the population.
More specifically, in the early steps of the genetic algorithm only a small number of individuals are
estimated to be much more competent and suitable than the rest of the individuals. Consequently,
this portion of the population is reproduced much more frequently than the rest of the individuals,
so that other possible solutions to the problem that might lead to a better solution are not explored.

- 𝜎 scaling selection [Goldberg, 1989]: The fitness of a chromosome based on 𝜎 scaling selection is
calculated from the fitness function, which takes into account the population mean fitness and the
population standard deviation. Thus, the 𝜎 scale selection assumes that the fitness of an individual
increases in proportion to its standard deviation from the population mean. This method allows
to maintain a stable balance between exploration and exploitation of the population.

- Boltzmann tournament selection [Goldberg, 1990]: In contrast to 𝜎 scaling selection, chromo-
some selection based on Boltzmann distribution evolves over generations, so the genetic algorithm

starts the optimization with high levels of exploration of possible solutions and ends with similarly
high levels of population exploitation.

• (b) Crossover operator

The crossover allows the exchange of one or more ”genes” (i.e. blocks of bits) between parental
chromosomes. The simplest form of this operator is single-point crossover, which randomly se-
lects a position on the chromosomes by which the operator determines the genes to be exchanged.
Next we present a schematic representation of the single-point crossover operator that results in
two children.
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001101 011100

001101

001101

Parent 1 Parent 2

Child 1

Child 2

Figure 6.9: Example single-point crossover factor for creating 2 ”offspring-children”

However, this operator is limited by two well-known problems: a) the problem of positional bias

caused by the high correlation of bit positions and their crossover probability, and b) the impossi-
bility of applying crossover to chromosomes of unequal length. Therefore, to mitigate the problem

of positional bias, the two-points crossover operator was proposed, according to which two bits
are randomly selected, and based on them the genes to be exchanged can be determined. Further-
more, this operator allows more genetic schemes to be crossed than the single-point crossover.
Again, however, two-point crossing cannot be applied to all genetic schemes. Therefore, more sta-
tistical methods (such as Poisson distribution) were used to select the number of crossover points.
Please note that the research work published so far has not established clear guidelines on which
particular crossover may be preferred over another.

• (c) Mutation operator

The mutation operator allows the value of a bit of the chromosome to be reversed according to
some probability, as shown in the figure below:

001010 U1U2

011010 U3U2

Figure 6.10: Example of a one bit textitmutation operation.

It can also be applied to the bits of any gene or to the mask of the crossover so that the crossover

points can evolve during the optimization process. The interchange function often protects against
irreversible losses of good solutions. In other words, when used judiciously together with replica-

tion and crossover it is a safe policy against a premature loss of a good solution. And the frequency
of change to obtain good results, empirically speaking, is about one change per few thousand bit
positions.
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6.4.3 Related Work

Genetic algorithms can exhaustively search a large number of different sets of neighborhoods (i.e.,
nearest users) of the target user in a recommender system. For this reason, they have been used
many times in the past to solve the problem of user clustering. For example, Rahman and Islam
[Rahman and Islam, 2014] modified the k-means algorithm so that it can be used together with a
genetic algorithm to address the known problems such as how to select the initial centers and the
number of clusters to be created. The authors of the paper therefore proposed the use of a fitness

function, which on the one hand minimizes the distances between members within clusters, and on
the other hand maximizes the distances between users belonging to different clusters.

In addition, a genetic algorithm was used by Bobadilla [Bobadilla et al., 2011] to address the
problem of sparsity of the user-item rating matrix. Thus, for each pair of users, they computed a
user-user similarity matrix with respect to their common preferences for items. Additionally, they
computed an item-item similarity matrix, which captures the similarity among items in the same
way. Finally, a fitness function combined the two aforementioned similarity matrices to select the
”best” users as parents to be used for reproducing the next, improved, generation.

Katarya and Verna [Katarya and Verma, 2016], in addition, proposed a hybrid user clustering
technique consisting of three algorithms: the k-means algorithm, the Particle Swarm Optimization

- PSO and the fuzzy c-means clustering algorithm. Initially, users are clustered according to their
preferences for the categories of items they interact with. Then, a combination of the PSO and k-

means algorithms is performed to select the initial centers of the user groups being created. Finally,
these centers are used as input to the c-means algorithm to finalize the created user groups.

Moreover, other genetic algorithms have been used to improve the quality of the recommenda-
tions both in terms of accuracy and diversity of the proposed items. For example, Zhang and Hurley
[Zhang and Hurley, 2009] proposed a clustering algorithm to introduce more diversity among the
items of the recommendation list. For this reason, they adopted a reordering method of the list of
recommended items to increase their diversity.

Finally, Bag et al. [Bag et al., 2019], as well as Berbague et al. [Berbague et al., 2021], proposed
a fitness function for selecting the 𝑘-nearest neighbors of the target user, in order to maximize the
diversity of the recommended items inside the recommendation list, whereas at the same time they
try to maximize the relevance of the nearest users (neighbors) with the target user.

6.4.4 The Architecture of a Genetic Algorithm for Recommendation Systems

Recommender systems provide recommendations that should satisfy different metrics for computing
the quality of the recommended items. That is they try to provide accurate and at the same time novel
recommendations. A genetic algorithm, therefore, in order to meet the above requirements, should
use a fitness function, which combines two different criteria relevance and diversity), as shown in the
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right-hand side of Figure 7.10:

Figure 6.11: The basic architecture of a genetic algorithm for recommender systems.

Turning now to the population of chromosomes, the coding of a chromosome often takes the form
of a sequence of genes, as shown in the left-hand side of the Figure 7.10. The initial chromosomes
evolve over generations with genetic operations such as selection, mutation and crossover to optimize
their quality (see in the center of Figure 7.10). This process is repeated until the fitness function stops
improving or a maximum number of specified steps of the algorithm is reached. As for the other
two genetic operations, crossover always produces two new chromosomes based on the two parental
chromosomes by swapping some of their genes, while mutation randomly changes a binary value of
a chromosome.

Based on the aforementioned Schema 7.10, each time we select a target user, we randomly gen-
erate an initial set of chromosomes. These chromosomes evolve 𝑛 times, and at each generation
the crossover and mutation genetic operators are applied to the population to generate new chromo-
somes (i.e., generating each time the nearest neighbors of the target user). Then, the new generation
is selected independently of the fitness function. Finally, the fitness function guides the optimization
of the users’ neighborhood in terms of its closeness to the target user, as well as in terms of the
diversity of the items included in this neighborhood.
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6.4.5 The Genetic Algorithm in pseudocode form

In this subsection we will present in pseudocode form a general genetic algorithm whose basic ar-
chitecture was described by Fig 7.10. As already mentioned, with the algorithm for optimizing the
neighborhood of the target user, a new generation (i.e., a new group of different users that constitute
its neighborhood) is generated at each iteration until we arrive at the optimal neighborhood. In each
generation we apply genetic operations such as selection, mutation and crossover to generate the next
generation. The algorithm takes as input the target user 𝑢0 and a set 𝑈 of users surrounding it, and
tries to identify an optimal neighborhood 𝑁0 with the nearest users to 𝑢0.

Algorithm 3 Optimizing the neighborhood of the nearest users.
Input:
𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑛}: the set of users.
𝑢0: the target user.
𝑚: a predefined maximum number of generations to be generated.
𝑓 : the size of the initial population.
Output:
𝑁0: the optimal neighborhood of user 𝑢0 or else the optimal chromosome.

1: population ← Creating a random population ( size = 𝑓)
2: While the number of generations 𝑔 < 𝑚 do

descendants ← applySelectionOperator(population) Parent Selection
descendants ← applyCrossoverOperator(descendants) Crossover
descendants ← applyMutationOperator(descendants) Mutation
Population ← descendants ∪ Population
𝑔 ← 𝑔+1

3: end_while
4: 𝑁0← Select_best_neighborhood (population) {based on their Fitness score}

So, as shown in line 2 of Algorithm 3, the process of optimizing the neighborhood of the nearest

users of the target user 𝑢0 involves 𝑚 generations. In each generation 𝑔 , the following three genetic
functions are applied: (1) the selection operator of the parents (chromosomes) from the total popula-
tion, (2) the crossover operator for the selected chromosomes, and (3) the mutation operator, which
is applied to the chromosomes created after the crossover. Finally, after optimizing the algorithm for
𝑚 generations, the best chromosome (neighborhood of users) in the population is selected based on
its fitness score.
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6.4.6 Step-by-Step Execution of the Genetic Algorithm

In this section, we gradually apply the genetic algorithm described in the previous section to the
example data 6.4, which is displayed in Table 6.1.

Example 6.4 You are given the data of Table 6.1, which holds the ratings of 7 users on 9 items.

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6 𝑖7 𝑖8 𝑖9
𝑢0 5 4 2 1 5 4 5 ? ?
𝑢1 4 5 2 1 5 2 2 3 5
𝑢2 4 3 4 5 4 2 1 4 2
𝑢3 4 1 2 5 2 2 1 2 1
𝑢4 2 1 5 3 4 5 4 3 2
𝑢5 5 4 1 1 5 1 4 5 1
𝑢6 1 2 4 5 2 2 5 1 2

Table 6.1: User-item ratings matrix, where we attempt to predict the rating of user 𝑢0 on items
𝑖8 and 𝑖9.

Suppose we are looking for the optimal neighborhood with the nearest users of the tar-
get user 𝑢0. We assume that the neighborhood of the target user 𝑢0 consists of a set of 2
neighboring users (neighborhood size 𝑘=2). Thus, we have the set of candidate neighbors
𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6} and the set of items 𝐼 = {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7} that will be the train-
ing data of our prediction model. Each user is identified by her ratings on the items, and each
rating is in the range of [1 − 5]. In this example, we want to predict the ratings of 𝑢0 on items
𝑖8 and 𝑖9 (test data), which are shown with red English question marks (?) in Table 6.1.

Chromosome encoding

To represent the candidate neighborhood of size 𝑘 = 2 of the target user 𝑢0, we will adopt a simple
binary encoding of a chromosome consisting of two genes, so that we have one gene for each can-
didate member in the neighborhood. Since we have 6 potential neighbors that can be included in
the neighborhood of 𝑘 = 2 nearest neighbors of the target user, it is sufficient to represent each gene
with only 3 bits. Thus, 001 can represent user 𝑢1, 010 can represent user 𝑢2, and so on. In Figure
6.12 we show 2 examples of neighborhoods based on the chromosome encoding we follow:

Using the above encoding we have 26= 64 different binary representations. We emphasize that
during the evaluation of a chromosome we should eliminate all unacceptable encodings. For exam-
ple, we should discard encodings that include redundant neighbors (e.g. 001001 → 𝑢1𝑢1). On the
other hand, we should also discard chromosomes that do not include users belonging to the user set
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001010 U1U2

011010 U3U2
Figure 6.12: Examples of the coding of a chromosome composed of 2 genes representing neighbor-
hoods of size 𝑘 = 2 nearest users.

𝑈 = {𝑢1, 𝑢2, .., 𝑢6} (π.χ. 111001 → 𝑢7𝑢1, 𝑢7 ∉ 𝑈).

Fitness function

Τo compute the similarity of the target user 𝑢0 with other users, we can empirically assume that, as
long as two users rate some items similarly, they may continue to have similar rating behavior for
other items in the future. We can adopt this assumption to define a measure of relevance or similarity

between two users 𝑢0 and 𝑢𝑐 , as in Equation 6.7:

𝑅𝑒𝑙(𝑢0, 𝑢𝑐) =
∑|𝑅0,𝑖−𝑅𝑐,𝑖|<=1

𝑖∈𝐼𝑢𝑐∩𝐼𝑢0
1

|𝐼𝑢𝑐 ∩ 𝐼𝑢0|
(6.7)

where 𝑅0,𝑖 and 𝑅𝑐,𝑖 are the ratings of users 𝑢0 and 𝑢𝑐 on item 𝑖. Also, 𝐼𝑢𝑐 and 𝐼𝑢0 are the sets of
items rated respectively by users 𝑢𝑐 and 𝑢0. Furthermore, in the numerator of Equation 6.7 we count
the number of items that both users had rated, where we find that their ratings differed by at most
one unit (|𝑅0,𝑖 −𝑅𝑐,𝑖| <= 1). In the denominator we count the number of items that have been rated
by both users. Thus, the relevance between the two users is normalized in the interval [0,1].

Now, applying Equation 6.7 to the data of Example 6.4, we compute the similarity vector of the
nearest users with the target user 𝑢0 as presented in Table 6.2.

Notice that user 𝑢5 has the highest similarity, equal to 0.85, to the target user 𝑢0. We emphasize
that for computing the similarity vector we only consider the ratings for items 𝑖1, 𝑖2, ...𝑖7, while for
items 𝑖8 and 𝑖9, we only indent to predict their ratings.

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6
𝑢0 0.71 0.57 0.28 0.42 0.85 0.14

Table 6.2: Calculation of the similarity of nearest users to target user 𝑢0. The similarity is defined in
the range of values [0,1].

Therefore, based on Equation 6.7 we can evaluate the quality of a given chromosome 𝑁 by cal-
culating the average similarity between the two users of the chromosome and the target user 𝑢0, as
shown in the fitness function below:
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑢0, 𝑁) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, 𝑁 includes rejected user codings
1
|𝑁| ∑𝑣∈𝑁 𝑅𝑒𝑙(𝑣, 𝑢0), otherwise

(6.8)

where 𝑁 is the size of the neighborhood of target user 𝑢0 or else the size of the chromosome
under consideration, which consists of two genes (i.e., two users).

We emphasize that for a number 𝑛 of users the total number of possible pairs of users per two

that can be generated is 𝑛!
2!(𝑛−2)! . That is, we have

⎛⎜⎜⎜⎜⎝
𝑛
2

⎞⎟⎟⎟⎟⎠
= 𝑛!
2!(𝑛−2)! . In our case (Example 6.4), the user

pairs that can be generated are 15 since we have six candidate users 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6}. In

other words, we have
⎛⎜⎜⎜⎜⎝
6
2

⎞⎟⎟⎟⎟⎠
= 6!
2!(6−2)! = 15.

After generating all possible pair combinations of users (chromosomes), we apply Equation 6.8
to evaluate the quality of each possible neighborhood with respect to the target user 𝑢0, which is
shown in Table 6.3.

Then, by applying the pseudocode of Algorithm 3 to the data of Example 6.4, we obtain Table
6.4 that holds the values of the main genetic operations. So according to the Algorithm 3, we first
randomly select the user pairs (chromosomes) to be included in the initial population, which appears
in the first row of Table 6.4. As we have 4 user neighborhoods (4 chromosomes) in the original
population, we select the 2 most suitable chromosomes (those with the highest fitness score) to
replicate, as shown in the 2nd row of Table 6.4. Thus, the 1st generation is shown in row 2 of Table
6.4.

The offspring are created by applying the crossover and mutation operators, which are described
in detail below:

• Crossover operator: The neighborhood𝑁10 is the combination of𝑢3 and𝑢4 (i.e.,𝑁10 ← {𝑢3, 𝑢4}.),
while 𝑁5 is the combination of 𝑢1 and 𝑢6 (i.e., 𝑁5 ← {𝑢1, 𝑢6}.). Using the crossover operator we
combine 𝑢1 and 𝑢4 to create the neighborhood 𝑁3, and similarly combine 𝑢3 and 𝑢6 to create the
neighborhood 𝑁12.

• Mutation Operator: With mutation we can create from the combination 𝑁3 ← {𝑢1, 𝑢4} the new
combination 𝑁2 ← {𝑢1, 𝑢3} where 𝑢4 is mutated to 𝑢3. Similarly, we create the neighborhood
𝑁9 ← {𝑢2, 𝑢6} from the combination 𝑁12 ← {𝑢3, 𝑢6} where 𝑢3 is mutated to 𝑢2.

In a similar way, then, genetic operations are applied to generate the 2nd and 3rd generations
respectively, until we arrive at the optimal generation (see the last row of Table 6.4). Note that in
the last column of Table 6.4 the average fitness score of the population slowly improves as new
generations are produced. Finally, according to command line 4 of the Algorithm 3, chromosome
𝑁8 will be selected as the optimal neighborhood of the target user 𝑢0, since it has the highest fitness
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𝑛 Chromosome Genes Fitness score

1 𝑁1 {𝑢1, 𝑢2} 0.64
2 𝑁2 {𝑢1, 𝑢3} 0.49
3 𝑁3 {𝑢1, 𝑢4} 0.56
4 𝑁4 {𝑢1, 𝑢5} 0.78
5 𝑁5 {𝑢1, 𝑢6} 0.42
6 𝑁6 {𝑢2, 𝑢3} 0.42
7 𝑁7 {𝑢2, 𝑢4} 0.49
8 𝑁8 {𝑢2, 𝑢5} 0.71
9 𝑁9 {𝑢2, 𝑢6} 0.35
10 𝑁10 {𝑢3, 𝑢4} 0.35
11 𝑁11 {𝑢3, 𝑢5} 0.56
12 𝑁12 {𝑢3, 𝑢6} 0.21
13 𝑁13 {𝑢4, 𝑢5} 0.63
14 𝑁14 {𝑢4, 𝑢6} 0.28
15 𝑁15 {𝑢5, 𝑢6} 0.49

Table 6.3: For the data in Example 6.4 we have formed user combinations of size 𝑘 = 2 (the so-called
neighborhoods) for the 6 candidate users and their corresponding fitness score with respect to the
target user 𝑢0.

Generation Population Selection Crossbreeding Mutation Fitness score

random {𝑁10, 𝑁5, 𝑁12, 𝑁14} - - - 0.31
1 {𝑁10, 𝑁5, 𝑁12, 𝑁14} {𝑁10, 𝑁5} {𝑁3, 𝑁12} {𝑁2, 𝑁9} 0.31
2 {𝑁10, 𝑁5, 𝑁2, 𝑁9} {𝑁2, 𝑁5} {𝑁2, 𝑁5} {𝑁6, 𝑁3} 0.40
3 {𝑁3, 𝑁6, 𝑁2, 𝑁5} {𝑁3, 𝑁6} {𝑁7, 𝑁2} {𝑁8, 𝑁2} 0.47

optimal {𝑁3, 𝑁6, 𝑁2, 𝑁8} - - - 0.54

Table 6.4: Optimization of the neighborhood of the nearest users of the target user of Example 6.4 (m=3)
.

score compared to the other chromosomes in the optimized population, which is shown in the last
row of Table 6.4.

6.5 Chapter Questions

1. Draw the basic building blocks and describe the basic function of a Single-layer Perceptron.
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2. State some basic activation functions that can be used in a neural network. What is the differ-
ence between linear and non-linear activation functions?

3. What is the back propagation method used for in neural networks? What is its relation to the
gradient descent method?

4. Draw the basic building blocks and describe the basic function of a Multi-layer Perceptron.

5. Which loss function is used for computing the output of a multi-layer Perceptron? Describe
each parameter of the loss function separately.

6. What are the basic layers of a convolutional neural network (CNN )? Describe the function of
each one separately.

7. Describe the basic operation of a Recurrent Neural Network. How does it differ from a feed
forward network?

8. What are the basic building blocks of genetic algorithms? Briefly describe each component
separately.

9. What are the basic operations of genetic algorithms? Briefly describe each operator separately.

10. Describe the basic steps of the genetic algorithm for recommender systems using either a
schema or pseudocode.

6.6 Python Programming Exercises

6.6.1 Factorize the user-item rating matrix by using a neural network with
Python.

You are given the user-movie rating matrix A of Figure 6.13, where columns 𝑀1−4 represent
movies, and rows 𝑈1−4 refer to users. Implement the UV-decomposition algorithm with the
help of a neural network and compute the approximation matrix ̂𝐴 of the original matrix 𝐴.

𝑀1 𝑀2 𝑀3 𝑀4

𝑈1 4 1 1 4
𝑈2 1 4 2 0
𝑈3 2 1 4 5
𝑈4 1 4 1 ?

Figure 6.13: User-Movie Rating Matrix Α (4 × 4).

Solution
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For this example we will use the library keras (pip install keras), which implements several
types of neural networks. The library keras will run as a frontend environment, while as a
backend we will use the library tensorflow (pip install tensorflow), which contains machine
learning algorithms. Therefore, we need to install the above libraries in the environment of
Anaconda where we will run the Python code. Furthermore, to visualize the neural network
model, we need to install the library graphviz (brew install graphviz). With the following code
we import the libraries keras, tensorflow, and graphviz.

1 impor t pandas as pd
2 impor t numpy as np
3 impor t m a t p l o t l i b . p y p l o t as p l t
4 impor t warnings
5 impor t pydot
6 impor t k e r a s
7 impor t g r a p h v i z
8 from s k l e a r n . m o d e l _ s e l e c t i o n impor t t r a i n _ t e s t _ s p l i t
9 from IPython . d i s p l a y impor t SVG

10 from t e n s o r f l o w . k e r a s . o p t i m i z e r s impor t SGD
11 from k e r a s . u t i l s . v i s _ u t i l s impor t mode l_ to_dot
12 from s k l e a r n . m e t r i c s impor t m e a n _ a b s o l u t e _ e r r o r
13 from k e r a s . u t i l s . v i s _ u t i l s impor t mode l_ to_dot

Next, we divide the data set of 16 ratings of Figure 6.13 into train (containing 12 ratings) and
test (containing 4 ratings) subsets. Then, based on the model we learn from the train subset,
we will proceed to check our rating predictions with the test subset.

1 d a t a s e t = pd . r e a d _ c s v ( ” u2 . d a t a ” , sep = ' \ t ' , names= ” u s e r _ i d , i t em_ id
, r a t i n g ” . s p l i t ( ” , ” ) )

2 d a t a s e t . u s e r _ i d = d a t a s e t . u s e r _ i d . a s t y p e ( ' c a t e g o r y ' ) . c a t . codes .
v a l u e s

3 d a t a s e t . i t e m _ i d = d a t a s e t . i t e m _ i d . a s t y p e ( ' c a t e g o r y ' ) . c a t . codes .
v a l u e s

4

5 p r i n t ( ” D a t a s e t \ n ” )
6 p r i n t ( ” U s e r _ i d Movie_ id R e a l _ R a t i n g ” )
7 f o r i i n range ( 0 , 1 6 ) :
8 p r i n t ( f ” { s t r ( d a t a s e t . u s e r _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) +
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s t r ( d a t a s e t . i t e m _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) + s t r (
d a t a s e t . r a t i n g . i l o c [ i ] ) } ” )

9

10 D a t a s e t
11

12 U s e r _ i d Movie_ id R e a l _ R a t i n g
13 1 1 4
14 1 2 1
15 1 3 1
16 1 4 4
17 2 1 1
18 2 2 4
19 2 3 2
20 2 4 0
21 3 1 2
22 3 2 1
23 3 3 4
24 3 4 5
25 4 1 1
26 4 2 4
27 4 3 1
28 4 4 0
29

30 t r a i n , t e s t = t r a i n _ t e s t _ s p l i t ( d a t a s e t , t e s t _ s i z e = 0 . 2 )
31 n_users , n_movies = l e n ( d a t a s e t . u s e r _ i d . unique ( ) ) , l e n ( d a t a s e t .

i t e m _ i d . unique ( ) )
32 p r i n t ( ” \ n t r a i n s u b s e t \ n ” )
33 p r i n t ( ” U s e r _ i d Movie_ id R e a l _ R a t i n g ” )
34 f o r i i n range ( 0 , 1 2 ) :
35 p r i n t ( f ” { s t r ( t r a i n . u s e r _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) +

s t r ( t r a i n . i t e m _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) + s t r ( t r a i n
. r a t i n g . i l o c [ i ] ) } ” )

36

37 p r i n t ( ” \ n t e s t s u b s e t \ n ” )
38 p r i n t ( ” U s e r _ i d Movie_ id R e a l _ R a t i n g ” )
39 f o r i i n range ( 0 , 4 ) :
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40 p r i n t ( f ” { s t r ( t e s t . u s e r _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) +
s t r ( t e s t . i t e m _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) + s t r ( t e s t .
r a t i n g . i l o c [ i ] ) } ” )

41

42 t r a i n s u b s e t
43 U s e r _ i d Movie_ id R e a l _ R a t i n g
44 2 1 1
45 3 4 5
46 2 4 0
47 3 3 4
48 1 2 1
49 1 4 4
50 4 3 1
51 4 2 4
52 1 1 4
53 2 3 2
54 2 2 4
55 3 2 1
56

57 t e s t s u b s e t
58 U s e r _ i d Movie_ id R e a l _ R a t i n g
59 1 3 1
60 4 1 1
61 3 1 2
62 4 4 0

Next, we try to learn new (low-dimensional) representations of users and movies. These
representations are also called embeddings. With the following code and the command

keras.layers.Embedding we create the user embeddings ( 2 latent factors * 4 users) and movie

embeddings (2 latent factors * 4 movies ), respectively. Then, we will combine a user’s embed-

ding with each movie embedding using the inner product operation to predict a user’s rating
for a movie. In other words, to predict the rating of each user-movie pair we will take the
inner product of the corresponding latent representation of the user vector and the movie vec-
tor. For example, suppose we use 𝑘 = 2 dimensions for the latent vector of users and movies,
respectively. These latent vectors may correspond, e.g., to how much a user likes action and
romantic movies, while the latent vector of the movie corresponds to how much action and
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how much romance there is in the movie.

1 n _ l a t e n t _ f a c t o r s _ u s e r = 2
2 n _ l a t e n t _ f a c t o r s _ m o v i e = 2
3 movie_ input = k e r a s . l a y e r s . I n p u t ( shape = [ 1 ] , name= ' I tem ' )
4 movie_vec = k e r a s . l a y e r s . F l a t t e n ( name= ' F l a t t e n M o v i e s ' ) ( k e r a s .

l a y e r s . Embedding ( n_movies , n _ l a t e n t _ f a c t o r s _ m o v i e , name= '
Movie −Embedding ' ) ( mov ie_ input ) )

5 u s e r _ i n p u t = k e r a s . l a y e r s . I n p u t ( shape = [ 1 ] , name= ' User ' )
6 u s e r _ v e c = k e r a s . l a y e r s . F l a t t e n ( name= ' F l a t t e n U s e r s ' ) ( k e r a s .

l a y e r s . Embedding ( n_users , n _ l a t e n t _ f a c t o r s _ u s e r , name= ' User −
Embedding ' ) ( u s e r _ i n p u t ) )

7

8 prod = k e r a s . l a y e r s . do t ( [ movie_vec , u s e r _ v e c ] , axes =1 , name= '
DotProduct ' )

9 model = k e r a s . Model ( [ u s e r _ i n p u t , mov ie_ input ] , prod )
10

11 SVG ( mode l_ to_dot ( model , show_shapes=True , show_layer_names =
True , r a n k d i r = 'HB ' ) . c r e a t e ( prog = ' do t ' , f o rmat = ' svg ' ) )

Running the above Python code, it displays a schematic representation of our example neural
network that implements the UV-decomposition algorithm or else known as matrix factoriza-

tion.

The above model takes two inputs: a user and a movie. To express a user, we use 2 dimensions.
Since we have 4 users in our example, we will create a 2 * 4 dimension matrix (users weight
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matrix). Similarly, for movies we will create a matrix of dimensions 2 * 4 (movies weight ma-
trix). To further understand the structure of the neural network, we also provide the following
Figure:

To see how many total parameters we want to learn in our model, we run the following code:

1 model . summary ( )

As shown in the above Figure, we have 16 parameters to learn in our prediction model, which
are analyzed as follows: 2*4 = 8 are for users, while 2*4 = 8 are for movies.
For the purposes of our example and in order to train our model, we will run it for 1000
iterations, or epochs, using the following Python code:
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1 model . compi l e ( ' SGD ' , ' mean_squared_er ror ' )
2 h i s t o r y = model . f i t ( [ t r a i n . u s e r _ i d , t r a i n . i t e m _ i d ] , t r a i n .

r a t i n g , epochs =1000 , v e r b o s e =1 )
3

4 y_hat = np . round ( model . p r e d i c t ( [ t e s t . u s e r _ i d , t e s t . i t e m _ i d ] ) , 0 )
5 y _ t r u e = t e s t . r a t i n g
6

7 pd . S e r i e s ( h i s t o r y . h i s t o r y [ ' l o s s ' ] ) . p l o t ( )
8 p l t . x l a b e l ( ” Epoch ” )
9 p l t . y l a b e l ( ” T r a i n E r r o r with MAE” )

10

11 Epoch 1 / 1 0 0 0
12 1 / 1 [==============================] − 0 s 428ms / s t e p − l o s s :

0 . 5 0 8 9
13 Epoch 2 / 1 0 0 0
14 1 / 1 [==============================] − 0 s 4ms / s t e p − l o s s :

0 . 5 0 5 4
15 Epoch 3 / 1 0 0 0
16 1 / 1 [==============================] − 0 s 3ms / s t e p − l o s s :

0 . 5 0 1 8
17 Epoch 4 / 1 0 0 0
18 1 / 1 [==============================] − 0 s 3ms / s t e p − l o s s :

0 . 4 9 8 3
19 Epoch 5 / 1 0 0 0
20 1 / 1 [==============================] − 0 s 4ms / s t e p − l o s s :
21 . . . .
22 . . . . .
23

24 1 / 1 [==============================] − 0 s 2ms / s t e p − l o s s :
0 . 0 0 2 8

25 Epoch 9 9 9 / 1 0 0 0
26 1 / 1 [==============================] − 0 s 3ms / s t e p − l o s s :

0 . 0 0 2 8
27 Epoch 1 0 0 0 / 1 0 0 0
28 1 / 1 [==============================] − 0 s 2ms / s t e p − l o s s :

0 . 0 0 2 8
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As can be seen from the first line of the above Python code, our model will be optimized using
the Stochastic Gradient Descent (SGD) method, and the metric that will be used to calculate the
difference between the user’s predicted rating ( ̂𝑦) for a movie versus his/her actual rating (𝑦)
is the Mean Absolute Error. As can be seen in the following Figure, the Train Error in terms of
MAE decreases drastically (0.0028 in the training data) after 1000 iterations (epochs - epoch).

Next, we use the following Python code to print for each user-movie pair the actual and pre-
dicted rating for the train and test subsets:

1 p r e d i c t i o n s = model . p r e d i c t ( [ t r a i n . u s e r _ i d . head ( 1 2 ) , t r a i n .
i t e m _ i d . head ( 1 2 ) ] )

2 p r i n t ( ” \ n t r a i n s u b s e t \ n ” )
3 p r i n t ( ” U s e r _ i d Movie_ id R e a l _ R a t i n g [

P r e d i c t e d _ R a t i n g ] ” )
4 f o r i i n range ( 0 , 1 2 ) :
5 p r i n t ( f ” { s t r ( t r a i n . u s e r _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) +

s t r ( t r a i n . i t e m _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) + s t r ( t r a i n
. r a t i n g . i l o c [ i ] ) + chr ( 9 ) + chr ( 9 ) + s t r ( p r e d i c t i o n s [ i ] ) } ”
)

6

7 p r e d i c t i o n s = model . p r e d i c t ( [ t e s t . u s e r _ i d . head ( 4 ) , t e s t . i t e m _ i d
. head ( 4 ) ] )

8 p r i n t ( ” \ n t r a i n s u b s e t \ n ” )
9 p r i n t ( ” U s e r _ i d Movie_ id R e a l _ R a t i n g [

P r e d i c t e d _ R a t i n g ] ” )
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10 f o r i i n range ( 0 , 4 ) :
11 p r i n t ( f ” { s t r ( t e s t . u s e r _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) +

s t r ( t e s t . i t e m _ i d . i l o c [ i ] + 1 ) + chr ( 9 ) + chr ( 9 ) + s t r ( t e s t .
r a t i n g . i l o c [ i ] ) + chr ( 9 ) + chr ( 9 ) + s t r ( p r e d i c t i o n s [ i ] ) } ” )

Next, we provide the Python code that displays the latent representations of users, movies and
the final predicted user-item rating matrix.
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1 movie_embedd ing_ lea rn t = model . g e t _ l a y e r ( name= ' Movie −Embedding '
) . g e t _ w e i g h t s ( ) [ 0 ]

2 p r i n t ( ” \ n The 4 ∗ 2 weight m a t r i x with the movie embeddings \ n ”
)

3 p r i n t ( pd . DataFrame ( mov ie_embedd ing_ lea rn t ) )
4 p r i n t ( ” \ n The 4 ∗ 2 weight m a t r i x with the u s e r embeddings \ n ” )
5 u s e r _ e m b e d d i n g _ l e a r n t = model . g e t _ l a y e r ( name= ' User −Embedding ' ) .

g e t _ w e i g h t s ( ) [ 0 ]
6 p r i n t ( pd . DataFrame ( u s e r _ e m b e d d i n g _ l e a r n t ) )
7 p r i n t ( ” \ n The p r e d i c t e d user −movie r a t i n g m a t r i x \ n ” )
8 p r i n t ( np . around ( np . a s m a t r i x ( u s e r _ e m b e d d i n g _ l e a r n t ) ∗ np . a s m a t r i x (

mov ie_embedd ing_ lea rn t ) . T , 2 ) )

In summary, as can be seen in the above Figure, the rating prediction for user 4 for movie 4 is
0.05. This rating prediction is reasonable given that User 4’s rating behavior is similar to that
of User 2 and the latter has rated Movie 4 with zero (0) as shown in Figure 6.13.
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