
8. Deep Graph Neural Networks for Recommender Systems

Summary: In chapter 8, we will study graph-based recommender systems. We will present
node similarity measures based on the local structure of the graph (e.g., adjacent nodes,
common neighbors, preferential attachment, etc.). Moreover, we will describe algorithms such as
RandomWalk with Restart (Personalized PageRank), SimRank, and PathSim, which take
under consideration the whole structure of the graph (e.g., the path length that connects two nodes
of the graph, the number of different paths that connect two nodes, etc.). Furthermore, we will study
recommender systems based on Knowledge Graphs, where data are stored with the help of
an ontology, which allows the new knowledge inference based on simple description logic rules.
Finally, we will describe in details theGraphConvolutional Netwoks andGraph Embeddings.

Prerequisite Knowledge: It is advised that the reader studies chapters 1 and 2 in advance.

8.1 Introduction to Heterogeneous Graphs: Fundamentals

In this section we introduce the concept of heterogeneous information network by defining as a current
example a network schema of an online newspaper, which will be used to illustrate the graph-based

similarity search algorithm known as Personalized PageRank (or Random Walk with Restart).

8.1.1 Heterogeneous Information Network Definition

Definition 8.1 Information Network (Yizhou et al. [2011]). An information network is

defined as a directed graph 𝒢 = (𝒱, ℰ) with a vertex type mapping function 𝜙 ∶ 𝒱 → 𝒬 and a

link type mapping function 𝜓 ∶ ℰ → ℛ, where each vertex 𝑣 ∈ 𝒱 belongs to only one particular

node type 𝜙(𝑣) ∈ 𝒬, and each link 𝑒 ∈ ℰ belong to only one particular relation 𝜓(𝑒) ∈ ℛ.

Unlike the traditional definition of information network, as defined in Definition 8.1, we may
clearly distinguish the different node types and the different edge types of the network. Thus, when
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the node types |𝒬| > 1 or the edge types |ℛ| > 1 are more than one, then the network is called a
Heterogeneous Information Network.

Example 8.1 We are given a heterogeneous information network that represents the interaction
of users with an online newspaper, and consists of nodes from five different types of entities
𝒬 = {𝑈, 𝑆, 𝐴, 𝐶, 𝐿}: users (𝑈), sessions (𝑆), articles (𝐴), article categories (𝐶), and geographic
locations related to the articles (𝐿). More precisely, each user 𝑢 ∶ 𝜙(𝑢) = 𝑈 is connected by one
or more edges to sessions 𝑠 ∶ 𝜙(𝑠) = 𝑆. Each session 𝑠 has a unique user 𝑢 associated with it
and one or more articles 𝑎 ∶ 𝜙(𝑢) = 𝐴, which was read by the user within the session. Finally,
each article 𝑎 may appear in one or more sessions 𝑠, belongs to a news category 𝑐 ∶ 𝜙(𝑐) = 𝐶
and is associated with a geographical location 𝑙 ∶ 𝜙(𝑙) = 𝐿.

8.1.2 Network Schema Definition

Definition 8.2 Network Schema (Yizhou et al. [2011]). The network schema is a meta

template for a heterogeneous information network 𝒢 = (𝒱, ℰ) with the node type mapping

𝜙 ∶ 𝒱 → 𝒬 and a link type mapping 𝜓 ∶ ℰ → ℛ, which is a directed graph defined over

node types 𝒬, with edges as relations fromℛ, denoted as 𝑇𝐺 = (𝒬,ℛ).

Network schema serves as a generic template of the nodes’ connections of the network, and tells
how many types of objects there are in the network and where the possible links exist. An abstract
network schema for our online news portal example is shown in Figure 8.1. A detailed representation
of the Network Schema, defining also node attributes and relationship types is presented in Figure
8.2.

8.2 Related Bibliography

In this section we review related work on predicting future links between the nodes of a graph. For
example, the research area of predicting links in social networks (e.g., friendship networks) attempts
to make a prediction of which new interactions between members of a social network is likely to
occur in the near future. There are two main research directions [Liben-Nowell and Kleinberg, 2003]
that handle the link prediction problem, and these are briefly described below, but will be presented
in detail later.

The first research direction, which is based on local attributes of a network, focuses mainly on
the local link structure of nodes. There is a variety of local similarity measures [Liben-Nowell and
Kleinberg, 2003], such as Adamic and Adar’s similarity index [Adamic and Adar, 2005], the Friend

of a Friend (FOAF) algorithm [Chen et al., 2009], the preferential attachment algorithm [Liben-Nowell
and Kleinberg, 2003], etc.
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Figure 8.1: Online News portal Network
Schema (abstract)

Figure 8.2: Online News portal Network Schema (detailed)

The second research direction is based on the global attributes of a graph, since it detects the
entire structure of the graph. A variety of approaches exist here as well, such as the Random Walk

with Restart algorithm [Pan et al., 2004], the SimRank algorithm [Jeh and Widom, 2002], the Katz

algorithm [kat], the PathSim algorithm [Sun et al., 2011], etc. All the aforementioned algorithms will
be described in detail in the following subsections.

Besides the above link prediction algorithms, which are mainly applied to unipartite graphs, there
are other methods that exploit additional data sources, such as messages between users, co-authors
of a paper, and shared tagging of information objects (tags in photos, videos, etc.). For example,
[Guy et al., 2009] proposed a new widget for providing a list of recommended friends to the target
user. This list, then, was based on aggregated information collected from various sources across
the IBM organization. Finally, the work of Chen and co-authors [Chen et al., 2009] evaluated four
recommendation algorithms (Content Matching, Content-plus-Link, FOAF and SONAR) that aim to
help users to discover new friends in IBM’s online social network.
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8.3 Local-based Similarity Measures

8.3.1 Shortest Path

Shortest path-based similarity measure: The shortest path measure calculates the shortest dis-
tance between any pair of nodes/users in a social network. Therefore, the nearest nodes can be
suggested to the target user 𝑣𝑥 , and to achieve this we usually use the well-known Dijkstra’s algo-

rithm or a more efficient algorithm [Fredman and Tarjan, 1987].

8.3.2 Common Neighbors

Common neighbors similarity measure: The Common Neighbors (CN) similarity measure or else
known as Friend of a Friend[Chen et al., 2009] algorithm is based on the number of friends that the
two target nodes 𝑣𝑥 and 𝑣𝑦 have in common according to Equation 8.1:

𝑠𝑐𝑜𝑟𝑒(𝑣𝑥 , 𝑣𝑦) ∶= |Γ(𝑣𝑥) ∩ Γ(𝑣𝑦)| (8.1)

where 𝑠𝑐𝑜𝑟𝑒(𝑣𝑥 , 𝑣𝑦) is the degree of relevance of 𝑣𝑥 and 𝑣𝑦 , and Γ(𝑣𝑥), Γ(𝑣𝑦) are the sets of neigh-
boring nodes of 𝑣𝑥 and 𝑣𝑦 respectively. Thus, |Γ(𝑣𝑥) ∩ Γ(𝑣𝑦)| is the number of their joint neighbor
nodes. The candidate friends are proposed to 𝑣𝑥 in descending order based on their score.

8.3.3 Jaccard similarity index

Jaccard index: Jaccard index is very similar to the common neighbor similarity measure. More
specifically, it captures the relevance between two nodes of a graph by measuring the degree of
overlap between their neighboring nodes, and is defined as follows:

𝑠𝑐𝑜𝑟𝑒(𝑣𝑥 , 𝑣𝑦) =
|Γ(𝑣𝑥) ∩ Γ(𝑣𝑦)|
|Γ(𝑣𝑥) ∪ Γ(𝑣𝑦)|

where in the numerator of the above equation we compute the number of common neighbors of the
two nodes under consideration, while in the denominator we compute the sum of their neighbours.

8.3.4 Salton similarity index

The Salton similarity index [Chowdhury, 2010]: This index can be seen as an improved version
of the index of common neighbours because, in addition to the number of common neighbours, it
takes into account the degree of the nodes under consideration. It is defined as follows:

𝑠𝑐𝑜𝑟𝑒(𝑣𝑥 , 𝑣𝑦) =
|Γ(𝑣𝑥) ∩ Γ(𝑣𝑦)|

𝑑𝑣𝑥 ∗ 𝑑𝑣𝑦

where 𝑑𝑣𝑥 and 𝑑𝑣𝑦 are the degree of 𝑣𝑥 and 𝑣𝑦 respectively.
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8.3.5 Adamic & Adar similarity index

Adamic & Adar similarity index [Adamic and Adar, 2005] proposed a distance measure to deter-
mine when two web pages are relevant. That is, they calculated attributes of the web pages and
defined the similarity between two pages 𝑥, 𝑦 as follows: ∑𝑧

1
log(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑧)) where 𝑧 is an attribute

shared by pages 𝑥, 𝑦. This concept improves the simple count of shared features by weighting the
rarer features more heavily. The similarity between nodes 𝑣𝑥 and 𝑣𝑦 can be computed from Equa-
tion 8.2:

𝑠𝑐𝑜𝑟𝑒(𝑣𝑥 , 𝑣𝑦) = 
𝑧∈Γ(𝑣𝑥 )∩Γ(𝑣𝑦 )

1
log Γ(𝑧) (8.2)

where Γ(𝑣𝑥), Γ(𝑣𝑦) are the common neighbors of 𝑣𝑥 and 𝑣𝑦 respectively.

8.3.6 Preferential Attachement

Preferential Attachment: The idea here is that the probability of a new edge being attached to the
target node 𝑣𝑥 is proportional to its node degree. In other words, the above probability is proportional
to the number of its neighboring nodes. Barabasi et al. [Barabasi et al., 2002] and Newman [Newman,
2001] proved empirically that the probability of a new edge being connected to nodes 𝑣𝑥 and 𝑣𝑦 is
correlated with the product of degrees of the nodes 𝑣𝑥 and 𝑣𝑦 , as defined in Equation 8.3:

𝑠𝑐𝑜𝑟𝑒(𝑣𝑥 , 𝑣𝑦) ∶= |Γ(𝑣𝑥) ⋅ Γ(𝑣𝑦)| (8.3)

where Γ(𝑣𝑥), Γ(𝑣𝑦) are the sets of neighboring nodes of 𝑣𝑥 and 𝑣𝑦 respectively.

8.3.7 FriendLink

FriendLink algorithm: The similarity index FriendLink [Papadimitriou et al., 2011] is used for the
link prediction problem between nodes of a graph. In online social networks such as Facebook, users
explicitly declare their friends so that they are able to share information with them (e.g. photos,
videos, etc.). The FriendLink similarity measure assumes that individuals in a friendship graph can
use all paths that connect them. Each path contributes to the similarity according to its length. Thus,
two users who are connected with many paths have a higher probability of knowing each other in
proportion to the length of those paths (i.e., the shorter the path length, the greater the probability
of affinity). The similarity 𝑠𝑐𝑜𝑟𝑒(𝑣𝑥 , 𝑣𝑦) between two nodes 𝑣𝑥 and 𝑣𝑦 of a graph is defined as the
number of paths of different lengths ℓ from 𝑣𝑥 to 𝑣𝑥 in 𝑣𝑦 :

𝑠𝑐𝑜𝑟𝑒(𝑣𝑥 , 𝑣𝑦) =
ℓ


𝑖=2

1
𝑖 − 1 ⋅

𝑝𝑎𝑡ℎ𝑠𝑖𝑣𝑥 ,𝑣𝑦


𝑖


𝑗=2
(𝑛 − 𝑗)

(8.4)

where:
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• 𝑛 is the number of nodes of a graph 𝐺,

• ℓ is the maximum length of a path connecting nodes 𝑣𝑥 and 𝑣𝑦 (excluding cyclic paths). By cyclic

paths we mean paths that are closed. A node may appear once in a path, while the path 𝑣1 → 𝑣2
→ 𝑣3→ 𝑣1→ 𝑣5 is cyclic/closed, because 𝑣1 appears twice,

• 1
𝑖−1 is an attenuation factor of the importance of long paths, which weights the paths according
to the length ℓ each has. Thus, a path of length 2 has a value equal to 1 ( 1

2−1 = 1), while a path
of length 3 has a value equal to 1

2 ( 1
3−1 = 1

2 ), etc. In this sense, we appropriately use a weighting

scheme to reduce the importance of the longer paths,

• 𝑝𝑎𝑡ℎ𝑠ℓ𝑣𝑥 ,𝑣𝑦
 the number of all paths of length-ℓ from 𝑣𝑥 to 𝑣𝑦 ,

•
𝑖


𝑗=2
(𝑛−𝑗) the number of all possible paths of length ℓ from 𝑣𝑥 to 𝑣𝑦 , if each node in the graph𝐺 was

connected to all other nodes. Using the fraction
𝑝𝑎𝑡ℎ𝑠ℓ𝑣𝑥 ,𝑣𝑦


𝑖


𝑗=2
(𝑛 − 𝑗)

the similarity measure is normalized

and takes values in [0,1].

So according to similarity measure FriendLink, if two nodes are highly relevant to each other, then
we expect the value 𝑠𝑐𝑜𝑟𝑒(𝑣𝑥 , 𝑣𝑦) to be close to 1. On the other hand, if two nodes are not relevant,
we expect the value 𝑠𝑐𝑜𝑟𝑒(𝑣𝑖, 𝑣𝑗) to be close to 0.

8.4 Global-based Similarity Αlgorithms

8.4.1 Katz Status Index

To identify the most important nodes in a graph, Leo Katz [Katz, 1953] combined sociological theory
with linear algebra by proposing the Katz Status index, which captures the “prestige” or status of a
node in the graph. Next, we will use an example to show how the aforementioned status index can
be modified to compute the similarity between the nodes of a graph.

Example 8.2 We are given the friendship graph 𝐺 of Figure 8.3, which represents the users of
a social network. Regarding the basic characteristics of graph 𝐺, it consists of a set of nodes
𝑉 and a set of edges 𝐸. Furthermore, each edge is defined by a specific pair nodes of the graph
(𝑣𝑖, 𝑣𝑗) where 𝑣𝑖, 𝑣𝑗 ∈ 𝑉. Also, we assume that the graph 𝐺 is non-directed and unweighted.
This means that the edges of the graph have no weights, and that the order of nodes on an
edge is not important. Therefore (𝑣𝑖, 𝑣𝑗) and (𝑣𝑗 , 𝑣𝑖) denote the same edge in 𝐺. We assume,
in addition, that the graph 𝐺 cannot have multiple edges connecting two nodes. Therefore, if
two nodes 𝑣𝑖, 𝑣𝑗 are connected to an edge of 𝐸, then there cannot be another edge in 𝐸 that
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connects them, given that 𝐸 is the set of edges of our graph. Finally, we assume that there can
be no loop edges in the graph 𝐺 (i.e. a node cannot be connected to itself via an edge). For the
graph of Figure 8.3, we are asked to compute the similarity of the nodes of the graph using
the Katz status index.

U1

U2 U3

U4

Figure 8.3: A friendship graph, which represents users who are connected to each other with
“friendship” edges.

A graph 𝐺 is usually represented by means of an adjacency matrix 𝐴 of dimension 𝑛 × 𝑛, where
𝑛 = |𝑉| is the number of nodes of𝐺. In other words, the adjacency matrix has 𝑛 rows and 𝑛 columns.
For the graph of Figure 8.3, the entries of the adjacency matrix are defined as follows:

𝐴[𝑣𝑖, 𝑣𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, If (𝑣𝑖, 𝑣𝑗) ∈ 𝐸

0, If (𝑣𝑖, 𝑣𝑗) ∉ 𝐸

Note that the adjacency matrix of an undirected and unweighted graph 𝐺 is a symmetric matrix

with values 1 and 0 respectively, showing if two nodes are adjacent or not. Moreover, since there are
no loop edges (self-connected edges), the principal diagonal of the adjacency matrix has zero values.
Consequently, the adjacency matrix of the graph for the data of Example 8.2 is shown in Table 8.1.

𝑈1 𝑈2 𝑈3 𝑈4
𝑈1 0 0 1 1
𝑈2 0 0 1 ?
𝑈3 1 1 0 ?
𝑈4 1 ? ? 0

Table 8.1: Adjacency matrix 𝐴 for the data of Example 8.2.

As depicted in Table 8.1, 𝑈1 is connected to 𝑈3 and 𝑈4, while 𝑈2 is only connected to 𝑈3. Also,
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𝑈1 and𝑈2 have a common friend𝑈3, since they are both connected to this user. So suppose that for
the social network of Figure 8.3, we want to recommend new friends to user 𝑈4. Thus, as we want
to predict the unknown values (see the question marks - ?) of Table 8.1, we may assume that they are
initially equal to 0 (i.e., there are no edges between the respective users). We will first present the
theoretical framework and then give a solution for the data in Example 8.2.

There are, of course, several similarity measures (e.g., Katz Status index, RWR algorithm, Sim-

Rank algorithm, etc.) that take into account the total graph’s structure [Liben-Nowell and Kleinberg,
2003] to capture the similarity between pair of nodes, which may depend on the number of paths
connecting them. We adapt correspondingly the Katz Status index, to capture the similarity score

between two nodes 𝑉𝑥 and 𝑉𝑦 by aggregating the paths of different lengths ℓ connecting 𝑉𝑥 to 𝑉𝑦 ,
as illustrated in the following Eq. 8.5:

𝐾𝑎𝑡𝑧𝛽 =
∞


ℓ=1

𝛽ℓ |𝑝𝑎𝑡ℎ𝑠ℓ𝑉𝑥 ,𝑉𝑦 | (8.5)

where 𝑝𝑎𝑡ℎ𝑠ℓ𝑉𝑥 ,𝑉𝑦 is the set of all paths of length-ℓ from node 𝑉𝑥 to 𝑉𝑦 , computed from the
adjacency matrix 𝐴. The Katz Status index exploits the fact that raising the adjacency matrix to the
power 𝑛 produces the number of length-𝑛 paths that connect a pair of nodes. Also, in Equation 8.5
there is a damping coefficient 𝛽 (or else, attenuation factor 𝛽), which weights the paths of different
lengths according to their contribution to the final similarity score of the nodes. This coefficient can
therefore take values such as 𝛽 < 1/𝜆, where 𝜆 is the largest eigenvalue of the adjacency matrix

A [Katz, 1953, Foster and Muth, 2002]. Very small values of 𝛽 lead to higher weights of the closest
paths. This fact makes the overall score function focus more on the nearest neighbours of the target

node, thus making it more efficient. On the other hand, very low values of 𝛽 result in very long paths
contributing much less to the overall similarity between two nodes of the graph. Please note that the
following Equation 8.6 is the analytical form of the Katz Status index when applied to the adjacency

matrix 𝐴:

𝐾𝑎𝑡𝑧(A; 𝛽) = 𝛽A + 𝛽2A2 + 𝛽3A3 + ... =
∞


ℓ=1

𝛽ℓAℓ , (8.6)

which is also expressed with the help of linear algebra matrices as follows:

∞


ℓ=1

𝛽ℓAℓ = (𝐼 − 𝛽A)−1 − 𝐼 (8.7)

where the identity matrix 𝐼 is a square matrix of dimension 𝑛 × 𝑛, which contains units on its
principal diagonal and has the same size 𝑛 as the adjacency matrix 𝐴. And the attenuation factor 𝛽
is a parameter that ensures the convergence of the above sequence and allow the computation of the
inverse of the adjacency matrix 𝐴. We choose 𝛽 equal to 1/𝐾 -as Foster and Muth do [Foster and
Muth, 2002]- and where 𝐾 is the largest sum of rows or columns of the adjacency matrix 𝐴.
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In the current example, then, suppose we compute the similarity between 𝑈4 and 𝑈2 and 𝑈3
respectively. We therefore apply the Katz status index to the friendship graph 𝐺 in order to provide
recommendations based on the computation of a similarity matrix among the nodes of the graph.
More specifically, we compute the Katz index by applying the Equation 8.7 to the adjacency matrix 𝐴
of the Table 8.1. The Katz index calculates the similarity between two nodes considering only paths
of length ℓ > 1.

𝑈1 𝑈2 𝑈3 𝑈4
𝑈1 0 0.1636 0.4909 0.4364
𝑈2 0.1636 0 0.4364 0.0545
𝑈3 0.4909 0.4364 0 0.1636
𝑈4 0.4364 0.0545 0.1636 0

Table 8.2: The user-user similarity/similarity table we compute for the data in Example 8.2.

Notice that the similarity between 𝑈4 and 𝑈2 is computed based on the unique path connecting
them (4→1→3→2), as shown in Figure 8.3. According to the user similarity predictions of Table 8.2,
the 3-step-long path contributes a score similarity equal to 0.0545. Regarding the similarity between
𝑈4 and 𝑈3, there is only one 2-hop long path (4→1→3)-as shown in Figure 8.3-which contributes a
score similarity equal to 0.1636.

The user-user similarity scores of Table 8.2 capture the future friendship relations we predict for
the social network of Example 8.2. There is a clear indication from the above similarity matrix that
𝑈4 should be recommended as a friend to𝑈3 over𝑈2, since𝑈4 has with𝑈3 a higher similarity score,
0.1636 > 0.0545.

8.4.2 SimRank for Unipartite Graphs

Jeh and Widom [Jeh and Widom, 2002] proposed in 2002 a similarity measure of the nodes in a graph
known as SimRank, which can be used to measure similarities either between nodes of the same type
(e.g. similarities between users considering their friendship relations) or between different types of
nodes (e.g. similarities between users considering the items they interact with). The idea of SimRank

is as follows:

Two nodes of a graph are similar if they are referenced by similar nodes.

For example, two articles are relevant if they are read by relevant users.

Definition 8.3 SimRank. The similarity between two nodes 𝑎 and 𝑏 of a unipartite directed

graph 𝐺 is defined as follows:
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𝑠(𝑎, 𝑏) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, Αν 𝑎 = 𝑏;

𝐶
|𝐼(𝑎)||𝐼(𝑏)|

|𝐼(𝑎)|


𝑖=1

|𝐼(𝑏)|


𝑗=1

𝑠(𝐼𝑖(𝑎), 𝐼𝑗(𝑏)), Αν 𝑎 ≠ 𝑏, και (𝐼(𝑎) ≠ ∅ ή 𝐼(𝑏) ≠ ∅);

0, Αν 𝐼(𝑎) = ∅ ή 𝐼(𝑏) = ∅,

(8.8)

where 𝐶 ∈ [0, 1] is the attenuation coefficient or else, damping factor, 𝐼(𝑎) are the incoming

neighbor nodes of 𝑎, and 𝐼(𝑏) are the incoming neighbor nodes of 𝑏.

Based on Equation 8.8 to compute the similarity 𝑠(𝑎, 𝑏) of nodes 𝑎 and 𝑏, we cumulatively sum
the similarity 𝑠(𝐼𝑖(𝑎), 𝐼𝑗(𝑏)) obtained from all possible pairs of their in-coming neighboring nodes
(𝐼𝑖(𝑎), 𝐼𝑗(𝑏)). Then we divide by the total number of possible pairs of in-coming neighboring nodes

|𝐼(𝑎)||𝐼(𝑏)|, to normalize the computed cumulative similarity. In other words, the similarity between
nodes 𝑎 and 𝑏 is the average similarity between the incoming neighbors of 𝑎 and the incoming
neighbors of 𝑏. Equation 8.8 is computed iteratively and usually converges quickly (after the fourth
or fifth iteration).

Example 8.3 We are given the unipartite and directed graph of Figure 8.4, whose nodes are
news articles that reference each other. We are asked to: (a) Apply Equation 8.8 to compute
the similarity score between articles A4 and A5, as well as between articles A1 and A5 after
only the first iteration of the SimRank algorithm. (b) Compute the similarity score between all
articles of the graph by repeatedly running the SimRank algorithm until it converges. The input
values of the parameters of the SimRank algorithm are 𝐶 = 0.8 and 𝐶 = 0.8 and 𝜀 ⩽ 10−4.
Notice in Figure 8.4 that the incoming neighbor nodes, which reference the target article A4 are
articles A1, A2, και A3. Also, the incoming neighbor node, which references the target article
A5 is article A3. We note here that both nodes A4 and A5 jointly have the incoming neighbor
article A3 referencing them. Based on the above data, with Equation 8.8 we can first compute
the cumulative similarity resulting from all possible combinations of incoming neighbor nodes

that reference at least one of the two target nodes:

|𝐼(𝐴4)|


𝑖=1

|𝐼(𝐴5)|


𝑗=1

𝑠 ⒧𝐼𝑖(𝐴4), 𝐼𝑗(𝐴5)⒭ = 𝑠(𝐴1, 𝐴3) + 𝑠(𝐴2, 𝐴3) + 𝑠(𝐴3, 𝐴3) = 0 + 0 + 1 = 1.
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Figure 8.4: A single graph with news articles.

Finally, applying the normalized attenuation coefficient 𝐶
|𝐼(𝐴4)||𝐼(𝐴5)| of Equation 8.8 the similar-

ity between articles A4 and A5 ends up being the following:

𝑠(𝐴4, 𝐴5) = 0.8
3 ∗ 1 ∗ 1 = 0.267.

Thus, the affinity between articles 𝐴4 and 𝐴5 is equal to 0.267.
Notice in Figure 8.4 that articles A1 and A5 have only one common incoming neighbor node

(the news article A3) that both references them. Thus, their similarity is computed as follows:

𝑠(𝐴1, 𝐴5) = 0.8
1 ∗ 1 ∗ 1 = 0.8.

Therefore, the similarity between articles 𝐴1 and 𝐴5 is larger than that between articles A4
and A5 that we had computed earlier, because A4 has 3 in-coming neighbor nodes, while A1
has only 1 in-coming neighbor node.
In the same direction, we apply the SimRank algorithm on all the data of Example 8.3 to com-
pute the similarity among all nodes of the graph. The results of relevance among the articles
are shown in Table 8.3. Looking at Figure 8.4 gives us the intuition that articles 𝐴3 and 𝐴5
should be more relevant, because they reference to each other. However, the SimRank algo-

rithm cannot capture this intuition, because it only takes into account the common incoming

neighbor nodes, which reference the two target nodes. Thus, because in our example news
articles 𝐴3 and 𝐴5 have no common incoming neighbor node, we are led to compute zero sim-

ilarity between them, as shown in Table 8.3. Of course, this is a disadvantage of the SimRank

algorithm.
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A1 A2 A3 A4 A5
A1 1.000 0.000 0.000 0.437 0.800
A2 0.000 1.000 0.640 0.267 0.000
A3 0.000 0.640 1.000 0.213 0.000
A4 0.437 0.267 0.213 1.000 0.437
A5 0.800 0.000 0.000 0.437 1.000

Table 8.3: Similarity matrix among all news articles, which is computed by using the SimRank

algorithm applied on the data of Example 8.3.

8.4.3 SimRank Algorithm for Bipartite Graphs

In bipartite graphs we have two different types of nodes (e.g. users and news article). The idea of
SimRank for bipartite graphs is similar for unipartite. That is:

Two news articles are relevant if they have been read by relevant users.
Two users are relevant if they have read relevant articles.

As described before, Equation 8.8, concerns only unipartite graphs, and finds the similarity be-
tween articles (i.e., only the incoming neighbor nodes matter). Now, for a user-news article bipartite

graph, the only difference in logic is that the incoming neighbor nodes no longer represent references
from other news articles, but the reading behavior of users. Also, for the calculation of similarity

between users (user-user similarity), incoming nodes are replaced by out-going neighbor nodes. Note
that instead of always checking the type of node (i.e.„ users or news articles), it suffices to consider
only the existence of a in-coming or out-going link. Please note that since each link in a bipartite

user-news article graph only ever connects users to news articles, this means that each link can be
treated as outgoing for a user and as incoming for an article.

Definition 8.4 SimRank for bipartite graphs. The similarity between two nodes 𝑒 and 𝑓 of

a bipartite graph 𝐺 is defined as follows:

𝑠(𝑒, 𝑓) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, Αν 𝑒 = 𝑓

𝐶
|𝑁(𝑒)||𝑁(𝑓)|

|𝑁(𝑒)|


𝑖=1

|𝑁(𝑓)|


𝑗=1

𝑠(𝑁𝑖(𝑒),𝑁𝑗(𝑓)), Αν 𝑒 ≠ 𝑓 και (𝑁(𝑒) ≠ ∅ ή 𝑁(𝑓) ≠ ∅)

0, if 𝑁(𝑒) = ∅ ή 𝑁(𝑓) = ∅,
(8.9)

where 𝑁(𝑒) and 𝑁(𝑓) are the sets of adjacent nodes of 𝑒 and 𝑓 respectively, and 𝐶 ∈ [0, 1].
That is, if a node is of type ”user”, its outgoing neighbors are the news articles with which it has
interacted. And by analogy, if a node is of type ”news article”, then its incoming neighbors are
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the users that have interacted with it. In other words, in bipartite graphs we do not consider
only incoming neighbor nodes, but simply the existence of neighbor nodes, which may be either
in-coming to the target node or out-going from the target node.

Example 8.4 We are given the bipartite user-news article graph of Figure 8.5, which displays
the online newspaper articles that users have interacted with.

Figure 8.5: Example of a bipartite user-news article network

We are asked to compute the pairwise similarity among all news articles and between all
users of the bipartite graph by iteratively running the SimRank algorithm until it converges.
The input values of the parameters of the SimRank algorithm are the following: atenuation

factor 𝐶 = 0.8 and convergence criteria 𝜀 ⩽ 10−4.
Next, we apply the SimRank algorithm on the data of Example 8.4 to compute the similarity

between all nodes of the graph. The similarity score between news articles and between users
are shown in Figure 8.6. Notice in the similarity matrix of Figure 8.6 that the similarity between
news articles 𝐴2 and 𝐴3 is 0.8, because they are read by the same user, namely Ann: 0.8

1∗1 ∗ 1.
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Figure 8.6: Similarity matrix after applying the SimRank algorithm for the data of Example 8.4.

Please also note in the similarity matrix of Figure 8.6 that Ann and Mike have a higher simi-

larity score compared to how similar they both are to Jim, because they have read a common
article, A4. Finally, news article A2 is similar to news article A5 because they have both been
read by similar users, namely Ann and Mike.

8.4.4 RandomWalk with Restart algorithm

The Random Walk with Restart (RWR) [Pan et al., 2004, Tong et al., 2006] is a variant of the well-
known PageRank algorithm. The RWR algorithm has properties that can adequately capture the
notion of similarity between the target node𝑁 and the other nodes of a graph. The main advantage
of RWR over PageRank is the “teleportation” feature, which forces the random “walker” to restart its
”walk” from the starting node𝑁 , whereas in PageRank the random “walker” jumps randomly to any
node in the graph. As expected, RWR assigns more similarity to nearby nodes of the starting node
𝑁 . This means that if two nodes of the graph are close to each other, the probability that they will
be connected via an edge in the future is higher. In social networks, RWR can capture the notion
of similarity between users who share a large number of common friends. For a bipartite user-item

graph, consequently, when two users interact with the same items, their overall probability of being
connected (via a friendship node) increases.

Next, we study the RWR algorithm and its application to heterogeneous graphs, that consist of
different node or edge types. We can, therefore, imagine a “random walker” which can jump from
any node 𝑣𝑖 to any of its neighbors with equal probability, and at each iteration step with some
certain probability can return back from his random walk to the starting node 𝑁 . In this way we
want to determine where the ”random walker” will end up after taking short ”walks” starting from
the target node 𝑁 . Thus, we want to predict which nodes of the graph are most relevant to the
target node 𝑁 . This similarity measure is referred to as Personalized PageRank [Page and Brin,
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1998], Topic-Sensitive PageRank [Haveliwala, 2002] or as Random Walk with Restart (RWR)
[Leskovec et al., 2019].

After running the RWR algorithm on a graph with 𝑛 nodes, we obtain as a result a similarity
matrix V of dimension 𝑛 × 𝑛, where each element 𝑣𝑖𝑗 corresponds to the degree of similarity of a
node 𝑖 to node 𝑗 . Unlike the similarity matrix computed by the SimRank algorithm, the similarity
matrix obtained by the RWR algorithm is not symmetric. This means that the similarity of a node 𝑖
to node 𝑗 is not equal to the similarity of node 𝑗 to node 𝑖. Therefore, the “random walker” is more
likely to end up at a “well-connected” node than at a “non well-connected node”.

Let us denote the transition probability matrix of a unipartite graph 𝐺 with the symbol M. That
is, the entry in row 𝑖 and column 𝑗 of M is equal to 1/𝑘 where 𝑘 is the degree of node 𝑗 (node’s
degree), and node 𝑖 is one of its neighbors. If 𝑘 = 0, then this entry equals 0. We emphasize that the
transition probability matrix M is obtained by multiplying the adjacency matrix A by the inverse of
the node degree matrix D−1 of our graph. In addition, suppose that we define by the variable 𝛽 the
probability for a ”random walker” to randomly continue its “walk”, and hence by 1−𝛽 the probability
to interrupt his “random walk” and jump to the starting node N. Let, further, eN be a column vector
with 1 in the row that concerns node𝑁 , and 0 at any other position. Finally, let v be a column vector
reflecting the probability that the “walker” is at a node at a particular time point 𝑡, and v′ be the
probability that the “random walker” is at a node at the next time point (i.e. 𝑡 + 1). Then the vector
v′ is related to v as follows:

v′ = 𝛽 ⋅ M ⋅ v + (1 − 𝛽) ⋅ eN (8.10)

Next, we define Equation 8.11 which transforms initial Equation 8.10, so that it can be applied to
all nodes of graph 𝐺 (rather than just one node of the graph), and compute a relevance matrix that
holds the similarities between the nodes of the graph by using the power iteration method.

Definition 8.5 Random Walk with Restart (RWR). The RWR method specifies a nonsym-

metric and row-normalized relevance matrixV′ where the sum of the per-row probabilities equals

unity. The matrix V′ stores the transition probabilities between any two nodes of the graph and

can be computed iteratively using Equation 8.11.

V′ = 𝛽 ⋅ M ⋅ V + (1 − 𝛽) ⋅ In (8.11)

where In is the identity matrix of dimension 𝑛×𝑛, whereasV andV′ are the normalized transition

probability matrices for two consecutive time points (e.g. 𝑡 and 𝑡 + 1).
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Example 8.5 Given the heterogeneous graph of Figure 8.7, which consists of 4 different types
of nodes (users, sessions, articles, article categories), we are asked to compute the nodes’ sim-

ilarity by iteratively running the RWR algorithm until it converges.

Figure 8.7: Heterogeneous graph of an online newspaper.

After applying the RWR algorithm to the data of Example 8.5, the results are shown in Figure 8.8.
The main advantage of the similarity matrix is that it consists of sub-matrices, which are useful for
various purposes. For example, the Article-Article sub-matrix (in the diagonal in Figure 8.8), shows
the transition probabilities matrix from one article to another article, and can be used to predict the

user’s next click based on the article with which he or she is currently interacting.

The User-Article Category sub-matrix (top right corner in Figure 8.8), moreover, reveals the gen-
eral preferences of users, determining how likely it is for the user to read an article of one or another
article category (e.g., Politics or Economics). Please note also that an interesting and not so obvious
observation appears in the User-Article Category sub-matrix of Figure 8.8. In particular, we can see
from Figure 8.7 that Mike has read one article from each category (Politics and Economics). How-
ever, it is clear from the relevance matrix of Figure 8.8 that his interest in Economics is much higher
than in Politics. The reason is that the A4 article that Mike read in session S3 appears in session
S2 of Ann along with A3, which is an Economics article, thus bringing A4 closer to the Economics
category, and thus, we predict an increasing interest of Mike in Economics. Finally, please note that
Example 8.5 will be solved as a programming exercise with Python at the end of this chapter.
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Figure 8.8: Relevance matrix among nodes of Example 8.5.

8.4.5 PathSim Algorithm

Yizhou et al. [Yizhou et al., 2011] proposed a new concept for measuring the similarity between nodes
in a network, which is based on the analysis of the meta paths through which nodes are connected. In
a heterogeneous network two nodes may be connected via different paths. For example, two articles
can be connected via the article-category-article path (similarity based on content), article-session-
article path (similarity based on session) and article-session-user-session-article path (similarity based

on collaborative filtering). Using different paths, different degrees of similarities are observed. These
paths are called meta paths as mentioned above and are typically defined as follows:

Definition 8.6 Meta Path. [Yizhou et al., 2011] A meta-path 𝒫 is a path defined in the graph

of the network schema 𝑇𝐺 = (𝒬,ℛ), and is denoted in the form 𝑄1
𝑅1−−→ 𝑄2

𝑅2−−→ ...
𝑅𝑙−→ 𝑄𝑙+1,

which defines a complex relation 𝑅 = 𝑅1 ∘ 𝑅2 ∘ ... ∘ 𝑅𝑙 between different types of nodes 𝑄1 και

𝑄𝑙+1, where ∘ denotes the composition operator of the connections/links, or edges.

There are many different meta-paths that can be found in the graph of Figure 8.7, whose network

schema is USAC (User, Session, Article, and Category). If we start from an “article” node, we can then
construct the following meta paths ACA, ASA, ASUSA, as shown in Figure 8.9. The main advantage
of the theoretical framework of meta-paths is its explanability and thus accountability. That is, it
provides a powerful mechanism for the user to choose the appropriate semantics that will determine
the similarity between nodes by choosing an appropriate meta-path. PathSim is a similarity measure

that is therefore able to capture the semantics of the similarity between nodes in a network.
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(a) Meta Path: ACA (b) Meta Path: ASA (c) Meta Path: ASUSA

Figure 8.9: Possible meta-paths of the USAC network.

Definition 8.7 PathSim: A similarity measure based on Meta paths. [Yizhou et al., 2011]

Given a symmetric meta-path P, the similarity measure PathSim between two nodes of the same

type 𝑥 and 𝑦 is:

𝑠(𝑥, 𝑦) =
2 ∗ |𝑝𝑥𝑦 ∶ 𝑝𝑥𝑦 ∈ 𝑃|

|𝑝𝑥𝑥 ∶ 𝑝𝑥𝑥 ∈ 𝑃| + |𝑝𝑦𝑦 ∶ 𝑝𝑦𝑦 ∈ 𝑃|
(8.12)

where 𝑝𝑥𝑦 is a path that starts at the origin node 𝑥 and ends at the destination node 𝑦, 𝑝𝑥𝑥 is

a path that starts at node 𝑥 and returns back to the same, and 𝑝𝑦𝑦 is a path that starts at node

𝑦 and returns back to the same.

Example 8.6 Given the heterogeneous graph of Figure 8.7, we are asked to compute the
similarities between the news articles by using simple meta-paths: ACA (content-based filter-
ing), ASA (session-based filtering) and ASUSA (collaborative filtering). Table 8.4 shows the
similarities of news article A3 with the other articles as follows: A3 shares only the same
article category as A5, so PathSimACA(A3,A5) = 2∗1

1+1 = 1. And A4 shares sessions with A3
and A5, therefore PathSimASA(A3,A4) = 2∗1

1+2 ≈ 0.666. Similarly, because articles A3 and A1
have been clicked (hence selected) by the same user, then PathSimASUSA(A3,A1) = 2∗1

1+1 = 1.
On the other hand, as articles A3 and A5 have not been clicked by the same user, then
PathSimASUSA(A3,A5) = 2∗0

1+1 = 0.

ACA ASA ASUSA

similarity(A3, A1) 0 0 1
similarity(A3, A2) 0 0 1
similarity(A3, A4) 0 0.666 0.666
similarity(A3, A5) 1 0 0

Table 8.4: Calculated similarity between mews article A3 and the other articles using different
meta-paths based on the PathSim algorithm.

Unlike the similarity measures SimRank and RWR, which are “biased” towards the most “well-
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connected” nodes in the graph, PathSim takes into account the “visibility” or “accessibility” of nodes,
bringing nodes that share similar “accessibility” closer together. For example, if two researchers have
published 10 papers each and a third researcher has published 200 papers, SimRank and RWR would
make the two aforementioned and comparatively inexperienced researchers very similar to the more
experienced third, and thus less similar to each other. On the other hand, PathSim would reduce their
similarity to the third and experienced researcher and bring them (the inexperienced ones) closer to
each other, considering their small number of publications as another factor of their similarity (i.e.,
the inexperienced researchers, more similar to each other than to the experienced researchers).

8.4.6 Explanation of recommendations based on meta-paths

An important function of a recommendation algorithm, in addition to generating recommendations,
is to be able to also justify them, so that the user can - in a ”transparent” way - understand the reason
that led to the recommendation of an item. In this direction, the PathSim algorithm is able to explain
its recommendations based on the number of instances of a meta-path that led to a recommendation.

Example 8.7 In the graph of Figure 8.7, to provide recommendations to users based on similar
news articles, we first find articles similar to the one the user just clicked on. Next, we rank
them based on their similarity to the target news article that the user has interacted with by
recommending a list of top-𝑁 news articles. Alternatively, for predicting the next article to
be recommended, the user’s entire last session can be taken into account to determine his/her
short-term preferences in order to suggest the appropriate articles for the given time point.
In this way, the similarities between articles can be determined by running PathSim on meta-

paths ASA, AUA, ACA and ALA. For example, based on meta-path ASA, in Figure 8.10 we
present how articles are ranked in a top-5 recommendation list, along with an explanation for
each recommended news article.
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Figure 8.10: News article recommendations based on meta-path ASA along with an appropri-
ate explanation for each recommended article.

So as shown in Figure 8.10, we provide recommendations that reflect the overall user interest
during a session along with appropriate explanations (i.e., why an article is recommended to
the user). This is an intuitive and user-friendly way of explaining the relationship between
the suggested article and the reason used to explain it, e.g. these two news articles have been

read together in 10 different user sessions.

Next, we will present how we can combine several meta-paths to provide ”hybrid” (multidimen-
sional) explanations along with the recommendations. We will therefore use four meta-paths to
provide an explanation for a recommended article: (AUA: when two articles have been read by the

same user, ASA: when two articles have been read within the same session, ACA: when two arti-
cles belong to the same article category, and ALA: when two articles refer to the same geographical

location).

Example 8.8 In our current example, combining the four meta paths [AUA, ASA, ACA, ALA],
we get a hybrid 4-dimensional explanation, which is shown in Figure 8.11.

Figure 8.11: Hybrid 4-dimensional explanation based on meta paths.

As shown Figure 8.11, the top-5 recommended articles are ranked based on the total number
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of meta-paths instances. Notice that we use different colors in the horizontal mixed bars for
the different styles of explanations used (user, session, etc.), as well as the recommended news
article.

8.5 Knowledge Graphs

The RDF (Resource Description Framework) is a knowledge representation language that allows the de-
scription of resources available in the real world. For our online newspaper example, such resources
could be a journalist, an article, a reader, etc. The description of resources is done by defining rela-
tionships between them.

Statements or else known as triplets are the key element in RDF and are used to create assertions
about a resource. RDF triplets can consist of the entity being described, the properties of the entity
being described, and a value for each of its properties. Alternatively, the aforementioned RDF triplets

may include three different things: a “subject”, a “predicate”, and an “object”. It is emphasized that
the “subject” and the “object” are resources, while the “predicate” is the relationship between them.

A knowledge graph, then, helps us to represent an RDF triplet with a structure, that contains nodes

and directed edges. To both of them may be applied labels, which identify either the attributes of a
node or the relationship connecting two nodes. The edges in an RDF triplet are always directed from
“subject” to “object”, while the label of the edge denotes the “predicate”. In summary, the general
structure of triple RDF tuples is as follows:

Statement (resource, property relationship, resource)

Example 8.9 Figure 8.12 shows the Knowledge Graph for an online newspaper that consists
of journalists, news articles, article categories, regions and readers who interact with the news
articles during their visit to the online newspaper. More specifically, journalists write about
specific geographical areas (e.g. Thessaloniki, Athens, etc.). The geographical dimension has
levels of granularity (city, county, etc.). The time dimension is also divided into different levels
of granularity: Day, Week, Month, Year. Finally, readers explicitly state that they like specific
articles, journalists and article categories. Suppose, therefore, that the owner of the online
newspaper wants to develop on his behalf a knowledge graph that accumulates knowledge
about the relationships between readers and articles, as well as other ”entities” (journalists,
article categories, etc.) with which they interact, in order to suggest personalized articles to
readers based on their previous interaction with the articles and other entities in the knowl-
edge graph.
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Figure 8.12: Example of an ”ontology” (RDF scheme) related to an online newspaper

Therefore, based on the knowledge graph of Figure 8.12, we can recommend to the target user
news articles of the same categories as those that s/he has interacted with in previous visits to
the online newspaper. Suppose, therefore, that the target reader has interacted in the past with
articles that belong to the ”Politics” and ”Sports” categories. In this case, the recommendation
system based on the knowledge graph of Figure 8.12 finds the reader’s previous visits (sessions)
to the online newspaper and which articles he has read in them. It then retrieves the category
to which these articles belong to, and suggests other articles belonging to the same categories,
that the reader has not interacted with before.
A second recommendation example based on the knowledge graph of Figure 8.12 could be
the following: we recommend to the reader, journalists who have written an article for a
geographical area of interest to him/her. So suppose that the target reader has interacted
with articles related to the geographical area of the city of Athens. If, now, we observe the
hierarchy of the ”entity” Region in Figure 8.12, we will see that it is broken down into 3 levels
(Municipality, City, County). Therefore, as the recommendation system takes into account a
higher level of abstraction (e.g. the county or else prefecture), it can conclude that the target
reader could be interested in those newspaper columnists who are assigned to write for the
prefecture of Attiki in Greece. Therefore, the recommendation system will suggest a similar
list to the reader, possibly removing those articles s/he has already interacted with in the past.
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8.6 Graph Convolutional Networks

One of the important studies in GCN -based recommendation systems is the research article, [Ying
et al., 2018]. This paper describes the PinSage algorithm, which recommends items to users for a very
large-scale online data service (meaning hundreds of millions of users and items), known as Pinterest.
The proposed model is based on randomwalks on the nodes of the bipartite user-item graph. The
aggregation of the latter creates latent representations of the nodes or else node embeddings of
the graph in a smaller (more abstracted) vector space that is therefore more representative of each
target node. By node embedding we mean the representation of a node in a smaller dimensional
space, which is achieved by focusing on the main characteristics of the target node and removing
any ”noisy” data. The training of the GCN neural network of the PinSage algorithm is guided by an
pair-wise ranking loss function, so that relevant items are placed as close as possible to the newly
created embedding space, and nodes are represented both in terms of their connectivity to other
nodes and in terms of their attributes/features. To address the challenges of the high dimensional
data, Map Reduce and locality sensitive hashing technologies are used since Pinterest is a service that
manages hundreds of millions of users and items (usually photos) every day.

The problem of item recommendation in large-scale graphs is also addressed by [Chen et al.,
2020]. Its authors revised the basic architecture of a GCN neural network by removing nonlinear

activation functions and adding more links between neurons of different layers. Their motivation was
the need to reduce the ”sparsity” of data in large user-item bipartite graphs and the fact that models
based on the GCN architecture cannot easily grow in depth due to the oversmoothing effect, where
node features tend to become more similar with the increase of the graph depth.

Finally, the problem of data ”sparsity” in user-item graphs is also addressed by [Feng et al., 2019].
The method proposed enriches the ratings of items from users with additional data sources (e.g., user
demographics or other item attributes), both of which are embedded in the same vector space. They
are then processed through polynomial Chebyshev filters to extract the basic user and item features.
The authors also apply a user-based attention mechanism, so that GCN emphasizes to the most
important neighbor users of the target user.

Next, we will describe the basic architecture of a GCN neural network with the help of an exam-
ple.

Example 8.10 Suppose we are the administrators of an online publishing house that wants
to provide personalized content to its readers based on their research preferences and their
collaborations with other readers. Initially, the recommendation system may ask readers for
some information about some broad demographic characteristics (e.g., occupation, research
interests, etc.) that may play an important role in the selection of recommended articles. For
example, a reader from an academic background tends to select scholarly articles related to
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their individual research interests, while readers who work in research centres tend to select
articles related to the subjects being studied there. Subsequently, as already mentioned, the
recommendation system records readers’ interaction with the articles as well as research or
other collaborations between readers in order to profile them.
Based on the aforementioned scenario, we construct a user-item bipartite graph (see Figure
8.13) where the main characteristics of a reader are his/her profession and research interests.
In the same Figure (8.13), the red directed edges connecting readers to articles capture the fact
that a reader likes a particular research article. Finally, in Figure 8.13, the green edges capture
the aforementioned collaborations of each reader with others. For a new reader, for whom
there are not many interactions with articles yet, there is the so-called cold-start problem,
since the recommender system needs a minimum number of interactions of the reader with
the articles in order for its recommendations to be accurate and precise. In such a difficult
case, the recommendation system could represent a reader’s profile by using the profiles of
other users or articles that have similar node features with him/her.

Figure 8.13: Readers-Articles Knowledge Graph.

Suppose we are asked to predict the characteristics (occupation and research interests) of the
reader named Peter in Figure 8.13, based on the articles he likes and his collaborations with
other readers. Therefore, we form a new graph in order to predict the characteristics of reader
Peter, who is located at the center of the concentric circles/convolution layers of a GCN neural
network as shown in Figure 8.14. The graph consists of two types of nodes (readers and arti-
cles). As we observe in Figure 8.14, the two features (profession and research interests) of each
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reader and the two features (journal title and scientific domain) of each article appear as node
features of the graph. As it is also shown in Figure 8.14, the preferences of Peter in terms
of scientific articles and his collaborations with other researchers are represented by using
directed edges. In particular, there are two different types of edges here (see Figure 8.14): The
first type (edges in green) refers to Peter’s collaborations, while the second type (edges in red)
refers to his preferences for specific articles. Notice that all edges are directed towards the
target node (Peter), because for this node we wish to compute its latent representation (i.e., its
node embedding) in the newly constructed smaller latent space.

Figure 8.14: Concentric convolution layers of the GCN neural network for generating the
latent representation of the node ”Peter” based on the data of the Example 8.10.

The basic function of a Graph Convolutional Network (GCN) is to gather information from the
adjacent nodes of the target node and forward it to the next convolution layer. Therefore, to
predict the latent vector of the reader named Peter, we build a GCN neural network based on
the data of the graph in Figure 8.14 such that the characteristics (research interests, occupation,
etc.) of the neighboring nodes of the target node are propagated and aggregated cumulatively
from layer to layer to represent its own preferences based on the following convolution rule:
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ℎ(𝑙+1)𝑖 = 𝜎
⎛⎜⎜⎜⎜⎜⎜⎝

𝑟∈𝑅


𝑗∈𝒩𝑟

𝑖

1
𝑐𝑖,𝑟

⋅ 𝑊(𝑙)
𝑟 ⋅ ℎ(𝑙)𝑗

⎞⎟⎟⎟⎟⎟⎟⎠
(8.13)

where ℎ(𝑙+1)𝑖 is the representation of the node’s feature of the target node 𝑖, ℎ(𝑙)𝑗 is the latent
representation of the neighbouring node 𝑗 in the l-layer of the convolutionary neural network,
𝑊(𝑙)
𝑟 the weight matrix in the l-layer with respect to the directed edges of type 𝑟, 𝒩𝑟

𝑖 is the
set of neighbors of the target node 𝑖 that are connected to it by the directed edges of type
𝑟 ∈ ℛ, and 𝑐𝑖,𝑟 = |𝒩𝑟

𝑖 | is the number of neighbors of node 𝑖 with respect to the directed
edges of type 𝑟. Recall that there are two types of directed edges 𝑟 in our example: the edges
of collaborations with other readers and those indicating Peter’s preference for an article.
Finally, 𝜎 is a nonlinear activation function (e.g., the sigmoid function).
In summary, the representation of Peter’s preferences via a GCN neural network can be de-
rived from the cumulative aggregation of the information of his neighboring nodes based on
either (a) his interactions with articles or (b) his collaborations with other readers. For exam-
ple, the latent vector of the target reader 𝑖 based on its interaction with articles is as follows:

h𝑖 = 𝜎 ⒧W ⋅ AGGREGATE ⒧q𝑗 , ∀𝑗 ∈ 𝐶(𝑖)⒭⒭ (8.14)

where 𝐶(𝑖) is the set of articles liked by reader 𝑖, and q𝑗 is the latent vector of an article 𝑗
with which reader 𝑖 has interacted. The AGGREGATE is a generalized function of cumulative

aggregation of the features of the neighboring nodes (articles or readers) of the target node 𝑖.
Usually for the AGGREGATE function we use the averaging operator, which is shown in the
following Equation:

h𝑖 = 𝜎
⎛⎜⎜⎜⎜⎜⎜⎝
W ⋅

⎧⎪⎪⎨⎪⎪⎩

𝑗∈𝐶(𝑖)

1
𝐶(𝑖) ⋅ q𝑗

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠
(8.15)

Alternatively, instead of the average operator we could use the concatenation operator, which
simply concatenates the vectors of the nodes that are aggregated together, as shown below:

h𝑖 = 𝜎
⎛⎜⎜⎜⎜⎜⎜⎝
W ⋅

⎧⎪⎪⎨⎪⎪⎩

𝑗∈𝐶(𝑖)

 h𝑖 ‖ q𝑗
⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠
(8.16)

where ‖ is the operator of the concatenation of the two vectors expressing the characteristics
of the nodes being concatenated.
Based on the data in Figure 8.14, let us assume that we will use the aggregation operator CON-
CATENATION. Therefore, given the characteristics of nodes Article 1 and Article 2, we would
make the prediction about Peter’s research interests that they would be either in Biology or
Machine Learning. We emphasize that the above cumulative aggregation procedure should
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also be followed for Peter’s collaborations with other readers who both work in academia.
Therefore, based on his aforementioned collaborations, we expect Peter’s occupation to be
University Professor (see Figure 8.14).

To summarize, in this section we considered how we can represent a node of a graph in a low-

dimensional vector representation (node embedding). In particular, we predicted the vector represen-
tation of the reader named Peter as shown in Figure 8.14.

8.6.1 Graph Attention Mechanism

In this section we will redefine the propagation rule of a GCN, which is based on Equation 8.13 by
applying an attentionmechanism, so that through this fixed coefficient -here 𝑐𝑖,𝑟- which represents the
number of neighbors of the target node 𝑖 for edges of type 𝑟, we will not assign the same importance
to all neighboring nodes.

The basic idea behind the Graph Attention Mechanism is to dynamically compute for each
node the coefficient 𝑐𝑖,𝑟 of Equation 8.13 rather than simply compute a fixed value of 𝑐𝑖,𝑟 for all nodes.
Thus, we can use the characteristics of the nodes to determine the “weight” of the most important
nodes with respect to the target node. Therefore, some neighboring nodes may be more important
than others in determining the representation of the target node because they have more relevant
node features with it.

The new dynamic coefficient will henceforth be denoted as 𝑎𝑖𝑗 , and will be calculated based on
the common features of a neighboring node 𝑗 with the target node 𝑖, which will then be passed to a
attention function implemented by a single-layer perceptron as follows:

𝑎𝑖𝑗 = attention ⒧ℎ𝑖, ℎ𝑗⒭

Now, for a target node 𝑖, and in order to make the attention coefficients 𝑎𝑖𝑗 easily comparable
among its neighbors, we normalize them with respect to the sum of the coefficients of all neighboring
nodes 𝑗 using the softmax function, so as to obtain a probability distribution whose sum is unity (1),
as follows:

𝑎𝑖𝑗 =
exp ⒧𝑎𝑖𝑗⒭

∑𝑘∈𝒩𝑖 exp (𝑎𝑖𝑘)

Thus, the convolution rule and propagation of Equation 8.13 is reformulated as follows:

ℎ(𝑙+1)𝑖 = 𝜎
⎛⎜⎜⎜⎜⎜⎜⎝

𝑟∈𝑅


𝑗∈𝒩𝑟

𝑖

𝑎𝑖𝑗 ⋅ 𝑊
(𝑙)
𝑟 ⋅ ℎ(𝑙)𝑗

⎞⎟⎟⎟⎟⎟⎟⎠
(8.17)

ℎ(𝑙)𝚤 = 𝜎
⎛⎜⎜⎜⎜⎜⎜⎝

𝑖∈𝑁𝑗

𝑎𝑖𝑗 ⋅ 𝑊 ⋅ ℎ𝑗
⎞⎟⎟⎟⎟⎟⎟⎠
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8.6.2 Node representation in GCNs by using Linear Algebra Matrices

In this subsection we will define the convolution rule and the information propagation of Equation
8.13 by using linear algebra matrices. So based on the adjacency matrix A ∈ {1, 0}𝑛×𝑛 of nodes and
the feature matrix of nodes H ∈ ℝ𝑛×𝑐 we can express the information convolution rule of Equation
8.13 in the form of a product of matrices as follows:

H(𝑙+1) = 𝜎 ⒧D̃−1 ⋅ Ã ⋅ H(𝑙) ⋅ W(𝑙)⒭

where Ã = A + I, I is the identity matrix, 𝐷̃ is a diagonal degree matrix with 𝐷̃𝑖,𝑖 = ∑𝑗 Ã𝑖,𝑗 ,
W ∈ ℝ𝑐×𝑐

′
a weight matrix, 𝜎 a nonlinear activation function and H ∈ ℝ𝑛×𝑐

𝑝𝑟𝑖𝑚𝑒
the latent represen-

tation of the nodes’ features of the graph. The rationale behind the above equation is that the initial
representations H of the nodes are subject to a linear transformation through their multiplication
by the weight matrix W, and are then propagated to neighboring nodes via the transition probability

matrix D̃−1Ã.
In addition, the spectral decomposition of the Laplacian matrix L allows the construction of

low-dimensional node embeddings in graphs. The Laplacian matrix L is a representation of a graph
in a matrix form, as illustrated below:

L = I − D−
1
2 ⋅ A ⋅ D−

1
2

We can also use an alternative definition of Laplacian matrix as follows:

L = D−
1
2 ⋅ (D − A) ⋅ D−

1
2

The above matrix L is known as signed normalized Laplacian matrix with positive/negative sign.
Therefore, we can express the convolution rule and the information propagation of Equation 8.13 in
the form of a matrix product as shown below:

H(𝑙+1) = 𝜎 ⒧L ⋅ H(𝑙) ⋅ W(𝑙)⒭

where L is the Laplacian matrix, H is the matrix that holds the features of the graph nodes, and
W is the weight matrix.

8.6.3 Loss Function Definition for Predicting Ratings in GCNs

For the purposes of a recommender system, the output of the neural network usually should be the
prediction of a user’s rating over an item. As we explained in Section 6.1.2, by using an MLP it is
possible to consider the target user and an item as two independent inputs and predict a rating by
taking their dot product. When we use a GCN, we can insert the convolved vectors into a three-layer



Chapter 8. Deep Graph Neural Networks for Recommender Systems 239

MLP to learn the potential correlation between the user and the item embeddings, so that, we can
predict a rating for them, as follows:

z1 = h𝑖 ⊕ q𝑗 (8.18)

z𝑙 = 𝜎 ⒧𝑊𝑇
𝑙 z𝑙−1 + 𝑏𝑙⒭ (8.19)

̂𝑦𝑖𝑗 = 𝜎 ⒧𝑊𝑇z𝑙 + 𝑏⒭ (8.20)

where h𝑖 is the embedding of the user, q𝑗 is the embedding of the item, ⊕ is the concatenation,
and the variables 𝑊𝑙 , 𝑏𝑙 and 𝜎 denote the weight matrix, the bias and the activation function for the
𝑙-layer respectively. Finally, we define the cross-entropy loss function of the predicted rating ̂𝑦𝑖𝑗 as
follows:

𝐿 = − 
(𝑖,𝑗)∈𝑌∪𝑌−

𝑦𝑖𝑗 ⋅ log ̂𝑦𝑖𝑗 + ⒧1 − 𝑦𝑖𝑗⒭ ⋅ log ⒧1 − ̂𝑦𝑖𝑗⒭ (8.21)

where ̂𝑦𝑖𝑗 is the rating we predict that the target user 𝑖 would give to the item 𝑗 , while 𝑦𝑖𝑗 is the
actual rating he has already given. We emphasize here that the augmented dataset 𝑌− includes, in
addition to the observed user-item interaction pairs𝑌, also the user-item interaction pairs− that have
not actually existed (unobserved pairs), so that we have a balance in terms of training the prediction
model between positive (observed) and negative (unobserved) user-item interactions.

8.7 Graph Embeddings

Graph embeddings are sophisticated methods of reducing the dimensionality of the node features
of a graph, which have led to more efficient graph data analytics. For this reason, graph em-
beddings have been used in recommender systems for similarity inference and link prediction
between users and items of a bipartite graph. For example, the node2vec and DeepWalk [Grover
and Leskovec, 2016] algorithms learn vector representations of the nodes of a graph to identify se-
mantically “similar” nodes. In particular, they learn latent representations of the nodes of a graph
by “traversing” the graph using random walks. The two aforementioned algorithms [Grover and
Leskovec, 2016] essentially apply the Skip-gram model to learn the latent representations of the
nodes of a graph (instead of the word representations of a given text, where the aforementioned
model, known in its above version as word2vec, was originally applied). In the same direction, the
Metapath2vec algorithm [Dong et al., 2017] extends the DeepWalk and node2vec algorithms as it is
applied to heterogeneous graphs by performing random walks based on meta-paths.

In addition, there are architectures of deep neural networks, such as graph neural networks (GNNs),
graph convolution networks (GCNs), etc, which propagate and cumulatively aggregate iteratively both
the node features and the node locality structure through the local neighbourhoods of the target node.
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Their purpose is to “learn” a latent vector of the aforementioned node that is more representative
compared to the original features vector. The MCRec method [Hu et al., 2018], for example, is an
extension of Neural Collaborative Filtering (NCF) [He et al., 2017] method and uses as input the node
embeddings constructed from node2vec algorithm, which is a variation of the word2vec algorithm
for graphs. Finally, the MP4Rec [Ozsoy et al., 2020] method is a GNN which is able to provide both
accurate and explainable recommendations. To learn the local characteristics of the nodes of the
graph, it uses meta-paths and the PathSim algorithm [Yizhou et al., 2011].

8.8 Chapter Questions

1. List the local-based similarity measures between nodes of a graph. For each, define how to
compute it.

2. Describe the Katz Status index algorithm for measuring similarity between nodes of a graph.

3. Describe briefly the SimRank algorithm for measuring similarity between nodes of a graph.

4. Describe the Random Walk with Restart algorithm for measuring similarity between nodes of
a graph.

5. Describe the PathSim algorithm for measuring similarity between nodes of a graph.

6. Apply to the graph in Figure 8.15 the following simple PageRank without ”teleportation” Equa-
tion:

v′ = M ⋅ v

where M is the transition probability matrix from one node to another and v is a vector ex-
pressing the importance of each node in the graph based on its accessibility/visibility. Please
recall that the idea behind PageRank is based on the fact that a random ”walker” starts at a
random node and each time randomly transitions to an adjacent node until it completes its
“journey”. At the end of this “journey” the task is to find out which nodes were visited most
often, which means that these are the most similar to the target node.

(a) Initialize each value of the initial probability vector as follows: v0 = e/𝑛, where 𝑛 is the
number of nodes in the graph, and e is a vector of length 𝑛 with all elements equal to 1
(unity). What will be the values of the initial vector v0?

(b) Calculate the transition probability matrix M from one node to the others.

(c) Apply the simple formula of PageRank above and run it iteratively for three steps or
until the vector v′ converges (1e-4 convergence factor). What will be the final values of
PageRank similarity vector v′?
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Figure 8.15: A graph of news articles, which cite/refer each other.

(d) What is the equation for computing the node embedding in a Graph Convolutional Net-

work? Describe each parameter of the equation separately.

(e) Describe the Graph Attention Mechanism. What is the basic operation it performs in a
GCN neural network?

7. Apply the PageRank with “teleportation” algorithm to the graph of Figure 8.15, where at each
step of the algorithm the “walker” will follow a ”random path” with probability 𝛽, and with
probability (1 − 𝛽) it can jump to a random node of the graph, using the following equation:

v′ = 𝛽 ×M × v + (1 − 𝛽) × e/𝑛

where 𝑛 is the number of nodes in the network and e is a vector of length 𝑛 with all elements
equal to 1 (unity). Apply the formula of PageRank with “teleportation” for three iterations.
Which result do you get? Use 𝛽 = 0.8.

8.9 Exercises in Programming

8.9.1 Heterogeneous Information Network for an Online Newspaper

We are given the following graph consisting of 4 different types of nodes (users, sessions,
articles, article categories):
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Requirements:

1. Create a heterogeneous graph with the four different types of nodes and present it visu-
ally.

2. Run the RWR algorithm (random walk with restart) on the entire heterogeneous network.

3. Analyze the AA (Article-Article), UA (User-Article) and UC (User-Category) subtables by
answering the following questions:

(a) For subtable AA:

• What is the most relevant article to the target article A1? Why?

• Which article is more similar to target article A2: A3 or A4? Why?

(b) For subtable UA:

• If we were to recommend to Ann again an article that she may have already read,
what would it be? Also, what article would we recommend to Mike again?

• Why are articles A1 and A2 more likely to be re-read by Ann than article A3?

(c) For subtable UC:

• Why is the Economics category more interesting to Mike than the Politics cate-
gory?

Solutions:

1. In the following, we give the result relevance matrix after running the random walk with

restart algorithm:
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2. In the following, there is a detailed commentary of the results for the AA, UA and UC
subtables:

(a) For subtable AA:

• Article A2 is the most relevant to A1, because it has been clicked on by the same
user in the same session and they belong to the same category of articles.

• A4 is most similar to A2 because it has been clicked on by the same user and
belongs to the same article category, while A3 and A2 have only been clicked on
by the same user.

(b) For subtable UA:

• We would suggest that both Ann and Mike re-read article A4, because it is the
most popular article on the graph.

• We can observe that Ann shows more interest in political articles than in eco-
nomics (3 out of the 4 articles she has read belong to Politics). That is why the
strength of A1 and A2 is higher than that of A3.

(c) For subtable UC:

• Although Mike has read a Politics article and an Economics article, we can ob-
serve that their scores are not the same because the Politics article A4 - as just
mentioned above - appeared in the same session as the Economics article A3
read by Ann, which brings the two categories closer to each other. Hence, A4
article comes a little closer to Economics, which in turn means that Mike prefers
Economics articles more than Politics ones.

In the following, we present the Python code, which implements the exercise in programming:

1 # Import L i b r a r i e s
2 impor t networkx as nx
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3 impor t pandas as pd
4 impor t numpy as np
5 from c o l l e c t i o n s impor t d e f a u l t d i c t
6 impor t copy
7

8 # Heterogeneous Graph C r e a t i o n
9 G = nx . Graph ( ) # u n d i r e c t e d graph

10 G . add_nodes_from ( [ ' Ann ' , ' Mike ' ] , e n t i t y = 'U ' )
11 G . add_nodes_from ( [ ' S1 ' , ' S2 ' , ' S3 ' ] , e n t i t y = ' S ' )
12 G . add_nodes_from ( [ ' A1 ' , ' A2 ' , ' A3 ' , ' A4 ' , ' A5 ' ] , e n t i t y = 'A ' )
13 G . add_nodes_from ( [ ' P o l i t i c s ' , ' Economics ' ] , e n t i t y = 'C ' )
14

15 G . add_edges_from ( [ ( ' Ann ' , ' S1 ' ) , ( ' Ann ' , ' S2 ' ) , ( ' Mike ' , ' S3 ' ) ] )
16

17 G . add_edges_from ( [ ( ' S1 ' , ' A1 ' ) , ( ' S1 ' , ' A2 ' ) ,
18 ( ' S2 ' , ' A3 ' ) , ( ' S2 ' , ' A4 ' ) ,
19 ( ' S3 ' , ' A4 ' ) , ( ' S3 ' , ' A5 ' ) ] )
20

21 G . add_edges_from ( [ ( ' A1 ' , ' P o l i t i c s ' ) , ( ' A2 ' , ' P o l i t i c s ' ) , ( ' A4 ' , '
P o l i t i c s ' ) , ( ' A3 ' , ' Economics ' ) , ( ' A5 ' , ' Economics ' ) ] )

22

23 p o s i t i o n s = { ' Ann ' : [ 0 , 5 ] , ' Mike ' : [ 0 , 1 ] ,
24 ' S1 ' : [ 2 , 4 ] , ' S2 ' : [ 2 , 3 ] , ' S3 ' : [ 2 , 1 ] ,
25 ' A1 ' : [ 4 , 6 ] , ' A2 ' : [ 4 , 4 ] , ' A3 ' : [ 4 , 2 ] , ' A4 ' : [ 4 , 1 ] , ' A5 '

: [ 4 , − 1 ] ,
26 ' P o l i t i c s ' : [ 6 , 2 ] , ' Economics ' : [ 6 , 4 ] }
27

28 nx . draw_networkx (G , n o d e _ s i z e =600 , w i t h _ l a b e l s =True , n o d e _ c o l o r =
' red ' , pos= p o s i t i o n s )

In the following the visual representation of our graph:
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1 # Adjacency Mat r ix A C r e a t i o n
2 A = nx . a d j a c e n c y _ m a t r i x (G)
3 A . t o d e n s e ( )
4 m a t r i x ( [ [ 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,
5 [ 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,
6 [ 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 ] ,
7 [ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 ] ,
8 [ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 ] ,
9 [ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ] ,

10 [ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ] ,
11 [ 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
12 [ 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ] ,
13 [ 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,
14 [ 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 ] ,
15 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 ] ] )
16

17 # C r e a t i o n o f the T r a n s i t i o n P r o b a b i l i t y Mat r ix
18 A . t o d e n s e ( )
19 # C a l c u l a t i o n o f the Nodes ' Degree Mat r ix
20 # d = np . a r r a y ( l i s t (G . de g r e e ( ) . v a l u e s ( ) ) )
21 d = np . a r r a y ( [ l e n ( nbrs ) f o r n , nbrs i n G . a d j . i t e m s ( ) ] )  
22

23

24 p = 1 . / d
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25

26 M = A . m u l t i p l y ( p )
27 d
28 # a r r a y ( [ 2 , 1 , 3 , 3 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 2 ] )  
29

30 # p a r a m e t e r s i n i t i a l i z a t i o n o f the RWR a l g o r i t h m
31 b e t a = 0 . 8
32 m a x _ i t e r = 100
33 eps = 1e −4 
34

35 n = nx . number_of_nodes (G)
36 I = np . i d e n t i t y ( n )  
37

38 # RWR a l g o r i t h m i m p l e m e n t a t i o n
39 V = I
40 f o r i i n range ( m a x _ i t e r ) :
41 V_new = b e t a ∗M∗V + (1 − b e t a ) ∗ I  
42

43 i f ( abs ( V−V_new ) < eps ) . a l l ( ) :
44 p r i n t ( ” Converged a f t e r %d i t e r a t i o n ” % ( i ) )
45 break  
46

47 V = V_new 
48 V . round ( 4 )
49

50 # Canverges a f t e r 34 i t e r a t i o n s
51 a r r a y ( [ [ 0 . 2 8 3 8 , 0 . 0 1 7 8 , 0 . 1 0 8 3 , 0 . 1 0 1 6 , 0 . 0 2 2 2 , 0 . 0 6 1 2 , 0 . 0 6 1 2 ,

0 . 0 5 2 4 , 0 . 0 4 5 , 0 . 0 2 0 6 , 0 . 0 4 4 6 , 0 . 0 2 9 1 ] ,
52 [ 0 . 0 0 8 9 , 0 . 2 7 6 4 , 0 . 0 0 6 5 , 0 . 0 1 5 6 , 0 . 0 9 5 5 , 0 . 0 0 7 8 , 0 . 0 0 7 8 ,

0 . 0 1 6 7 , 0 . 0 3 3 1 , 0 . 0 4 8 7 , 0 . 0 1 3 , 0 . 0 2 6 1 ] ,
53 [ 0 . 1 6 2 5 , 0 . 0 1 9 6 , 0 . 3 3 9 3 , 0 . 0 6 7 2 , 0 . 0 2 4 5 , 0 . 1 7 9 7 , 0 . 1 7 9 7 ,

0 . 0 3 5 5 , 0 . 0 5 3 8 , 0 . 0 1 8 4 , 0 . 1 1 0 3 , 0 . 0 2 1 6 ] ,
54 [ 0 . 1 5 2 5 , 0 . 0 4 6 9 , 0 . 0 6 7 2 , 0 . 3 1 4 1 , 0 . 0 5 8 8 , 0 . 0 4 9 7 , 0 . 0 4 9 7 ,

0 . 1 6 0 7 , 0 . 1 1 4 6 , 0 . 0 5 8 5 , 0 . 0 5 7 1 , 0 . 0 8 7 8 ] ,
55 [ 0 . 0 3 3 2 , 0 . 2 8 6 5 , 0 . 0 2 4 5 , 0 . 0 5 8 8 , 0 . 3 5 8 3 , 0 . 0 2 9 2 , 0 . 0 2 9 2 ,

0 . 0 6 2 7 , 0 . 1 2 4 1 , 0 . 1 8 2 5 , 0 . 0 4 8 8 , 0 . 0 9 8 1 ] ,
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56 [ 0 . 0 6 1 2 , 0 . 0 1 5 7 , 0 . 1 1 9 8 , 0 . 0 3 3 1 , 0 . 0 1 9 5 , 0 . 2 9 4 2 , 0 . 0 9 4 2 ,
0 . 0 1 8 2 , 0 . 0 4 4 9 , 0 . 0 1 2 8 , 0 . 1 1 5 5 , 0 . 0 1 2 4 ] ,

57 [ 0 . 0 6 1 2 , 0 . 0 1 5 7 , 0 . 1 1 9 8 , 0 . 0 3 3 1 , 0 . 0 1 9 5 , 0 . 0 9 4 2 , 0 . 2 9 4 2 ,
0 . 0 1 8 2 , 0 . 0 4 4 9 , 0 . 0 1 2 8 , 0 . 1 1 5 5 , 0 . 0 1 2 4 ] ,

58 [ 0 . 0 5 2 4 , 0 . 0 3 3 5 , 0 . 0 2 3 6 , 0 . 1 0 7 1 , 0 . 0 4 1 8 , 0 . 0 1 8 2 , 0 . 0 1 8 2 ,
0 . 3 0 4 , 0 . 0 4 5 6 , 0 . 0 7 7 8 , 0 . 0 2 1 8 , 0 . 1 5 2 7 ] ,

59 [ 0 . 0 6 7 4 , 0 . 0 9 9 4 , 0 . 0 5 3 8 , 0 . 1 1 4 6 , 0 . 1 2 4 1 , 0 . 0 6 7 3 , 0 . 0 6 7 3 ,
0 . 0 6 8 4 , 0 . 2 9 4 2 , 0 . 0 7 2 2 , 0 . 1 1 4 3 , 0 . 0 5 6 1 ] ,

60 [ 0 . 0 2 0 6 , 0 . 0 9 7 4 , 0 . 0 1 2 3 , 0 . 0 3 9 , 0 . 1 2 1 6 , 0 . 0 1 2 8 , 0 . 0 1 2 8 ,
0 . 0 7 7 8 , 0 . 0 4 8 1 , 0 . 3 1 0 9 , 0 . 0 1 9 6 , 0 . 1 5 5 4 ] ,

61 [ 0 . 0 6 6 9 , 0 . 0 3 8 9 , 0 . 1 1 0 3 , 0 . 0 5 7 1 , 0 . 0 4 8 8 , 0 . 1 7 3 2 , 0 . 1 7 3 2 ,
0 . 0 3 2 7 , 0 . 1 1 4 3 , 0 . 0 2 9 4 , 0 . 3 2 2 9 , 0 . 0 2 4 9 ] ,

62 [ 0 . 0 2 9 1 , 0 . 0 5 2 3 , 0 . 0 1 4 4 , 0 . 0 5 8 5 , 0 . 0 6 5 4 , 0 . 0 1 2 4 , 0 . 0 1 2 4 ,
0 . 1 5 2 7 , 0 . 0 3 7 4 , 0 . 1 5 5 4 , 0 . 0 1 6 6 , 0 . 3 2 3 3 ] ] )

Note: For easier and better analysis of the above result table we can convert it to a data frame

format using the following Python code:

1

2 r e s u l t = d e f a u l t d i c t ( l i s t )
3 f o r n1 i n G . nodes ( ) :
4 r e s u l t [ n1 ] = d e f a u l t d i c t ( i n t )
5 f o r n2 i n G . nodes ( ) :
6 r e s u l t [ n1 ] [ n2 ] = V[ n _ d i c t [ n2 ] ] [ n _ d i c t [ n1 ] ]
7

8 o r d e r = [ ' Ann ' , ' Mike ' , ' S1 ' , ' S2 ' , ' S3 ' , ' A1 ' , ' A2 ' , ' A3 ' , ' A4 ' , ' A5 ' , '
P o l i t i c s ' , ' Economics ' ]

9 r e s u l t _ d f = r e s u l t _ d f [ o r d e r ]
10 r e s u l t _ d f . r e i n d e x ( o r d e r )
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