

ChatGPT, LLMs, and Deep Learning with Python
Transformers, Data Mining, Information Retrieval, Machine Learning and Artifi-
cial Intelligence Algorithms

Panagiotis Symeonidis
Associate Professor – University of the Aegean
psymeon@aegean.gr

Dedicated to my son Dimitris!

(This pages is left intentionally blank)

Contents

Foreword . 7

1 Transformers, Large Language Models, and ChatGPT . 8

1.1 Transformers 8

1.2 Attention 9

1.2.1 self-Attention Mechanism for Movies . 11

1.3 Detailed Transformer’s Architecture for Movie Tokens 12

1.4 Large Language Models 13

1.4.1 Encoders . 13

1.4.2 Decoders . 13

1.4.3 Encoder and Decoder Transformers . 13

1.5 Decoder transformers 14

1.5.1 Attention . 14

1.6 Self-Attention 14

1.6.1 Overview of the Decoder Architecture . 15

1.6.2 Jaguar Example: Generating Sequences with the Decoder 16

1.6.3 Training the Decoder . 17

5

1.6.4 Inference and Generation . 18

1.7 Encoder transformers 18

1.7.1 Jaguar Example: Context Classification Task . 20

1.7.2 Training the Encoder . 21

1.7.3 Inference and Predictions . 21

1.7.4 Conclusion . 21

1.8 Encoder-Decoder Transformer 22

Bibliography 22

Total Bibliography of all chapters 23

Index . 35

The content from this page has been removed

The content from this page has been removed

Chapter 1. Transformers, Large Language Models, and ChatGPT 9

Moreover, transformers can learn on their own using data that isn’t labeled, a method called
self-supervised learning. This works really well for language models because transformers can take
advantage of the huge amounts of text available online and from other sources to improve their
understanding.

For example, a model might be trained to predict missing words in a sentence, such as turning
”The bird [MASK] high in the sky” into ”The bird flies high in the sky.” Another common task is
next-sentence prediction, where the model decides if two sentences logically follow each other, like
”The boy kicked the ball” and ”It rolled down the hill.” Self-supervised learning helps the transformer
learn patterns, relationships, and structures in language, enabling it to perform well on more specific
tasks later, like translation or summarization.

1.2 Attention

Attention mechanism is an important component of a transformer. In this section, we will describe
the self-attention mechanism by using as a paradigm the recommendation systems. Let us assume
that we know the attributes of movies in the catalog, which can be seen in Figure 1.1, where the
movies’ vectors are represented with a matrix X of dimensions 𝑁 ×𝐷 in which the 𝑛-th row corre-
sponds to the movie vector x⊤𝑛 . We refer to these data vectors as tokens, and in our running example
they correspond to movies.

𝐹1 𝐹2 … 𝐹𝑑
𝑀1 0 1 … 0
𝑀2 1 1 … 0
𝑀3 0 1 … 0
𝑀4 0 1 … 0
… … … … …
𝑀𝑛 0 0 … 1

Figure 1.1: Running example: Movie-Feature matrix X.

Then, the elements 𝑥𝑛𝑖 of the tokens are called features. In Figure 1.1, the matrix may corresponds
to movie features such as genre, actor, director, etc.). The fundamental building block of a trans-
former is a function that takes a data matrix as input and creates a transformed matrix X of the same
dimensionality as the output. We can write this function in the form

X = TransformerLayer [X] . (1.1)

Each transformer layer contains its own weights and biases, which can be learned using gradient
descent using an appropriate loss function. A transformer layer works in two stages: (i) attention
layer and (ii) feature transformation. Let’s explain them step by step:

12 1.3. Detailed Transformer’s Architecture for Movie Tokens

1.3 Detailed Transformer’s Architecture for Movie Tokens

Formovie recommendation, eachmovie𝑀𝑖 is represented by a vector x𝑖 ∈ ℝ𝑑 containing its features.
The sequence of all movies [x1,… , x𝑁] is fed into the transformer encoder. The output [y1,… , y𝑁]
represents enriched embeddings that capture contextual relationships between movies. A trans-
former for movie tokens consists of the following components:

• Input Representation: Each movie is represented as a vector of features (e.g., genre, cast).

• Multi-HeadAttention: Computes attention scores to focus on relevantmovies in the dataset.

• Attention Scores: Combines information from similar movies into enriched representations.

• Concatenation of Multi-Heads: Concatenates the output of all heads.

• Feed-Forward Network (FFN): Applies two dense layers with a ReLU activation to the at-
tention output.

• Final Output: Generates enriched movie embeddings capturing contextual relationships.

Formovie recommendation, eachmovie𝑀𝑖 is represented by a vector x𝑖 ∈ ℝ𝑑 containing its features.
The sequence of all movies [x1,… , x𝑁] is fed into the transformer encoder. The output [y1,… , y𝑁]
represents enriched embeddings that capture contextual relationships between movies.

Example: Five-layer Transformer with Movie Tokens

To illustrate the application of a transformer encoder layer, consider the following example:

1. We have a movie catalog represented by a matrix X:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1
0 1 1 1 0
1 1 0 0 1
0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here: Each row (𝑀1,𝑀2,𝑀3,𝑀4) represents a movie (tokens).

Each column (𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5) represents a feature (e.g., Action, Comedy, Actor, Director,
Budget).

2. Multi-Head Attention: Compute Q, K, and V by applying learned projection matrices:

Q = XW𝑄, K = XW𝐾 , V = XW𝑉 . (1.4)

For simplicity, assume these matrices are already calculated.

The content from this page has been removed

The content from this page has been removed

14 1.5. Decoder transformers

another, speech-to-text, and other sequence transformation tasks. A notable example of a Seq2Seq
transformer is the T5 (Text-to-Text Transfer Transformer) model, which unifies various NLP tasks
in a single framework.
In summary, these three categories—encoders, decoders, and Seq2Seq transformers—form the foun-
dation of modern LLMs, enabling diverse applications across the field of natural language processing.

1.5 Decoder transformers

Decoder transformers are a class of neural network models used for autoregressive sequence gener-
ation tasks, where the goal is to predict the next element in a sequence based on preceding elements.
Thesemodels are characterized by their ability to generate text, predict sequences, or perform similar
tasks that involve conditional probability modeling.

1.5.1 Attention

Next, we will motivate the use of the attention mechanism by using natural language as an example.
Consider the following two sentences:

The jaguar runs into the jungle, chasing a hunter.

The jaguar speeds down the road, chasing a super car.

.
Here, the word “jaguar” has different meanings in the two sentences. In the first sentence it refers
to an animal, whereas in the second sentence it refers a car. However, this can be detected only by
looking at the context provided by other words in the sequence. We also see that some words are
more important than others in determining the interpretation of “jaguar”. In the first sentence, the
words “jungle” and “hunter” most strongly indicate that “jaguar” refers to the large wild cat, whereas
in the second sentence, the words “road” and “super car” are strong indicators that “jaguar” refers
to a luxury car brand. We see that to determine the appropriate interpretation of “jaguar”, a neural
network processing such a sentence should attend to, in other words rely more heavily on, specific
words from the rest of the sequence. This concept of attention is illustrated in Figure 1.2.
Moreover, we also see that the particular sentence’s word position that should receive more attention
depend on the input sequence itself: in both sentences it is the third, sixth and ninth words that are
important.

1.6 Self-Attention

Transformers, originally developed for processing sequential text data, but they have proven to be
highly effective also in recommendation systems.

Chapter 1. Transformers, Large Language Models, and ChatGPT 15

Figure 1.2: Visual representation of attention mechanism in which the interpretation of the word
“jaguar” is influenced by the words “jungle” and “hunter”, with the thickness of each line being
indicative of the strength of its influence.

1.6.1 Overview of the Decoder Architecture

The decoder architecture is built upon the transformer framework and is specifically designed to
predict the next token in a sequence while attending only to past tokens. The input to the model is
a sequence of tokens, represented as numerical indices in a vocabulary. These indices are converted
into dense vector embeddings using a learnable embedding layer. To incorporate positional infor-
mation, a positional embedding is added to the token embeddings, ensuring that the model is aware
of the order of the sequence.
Each transformer layer within the decoder consists of the following components:

• Causal Multi-head Self-attention: This layer allows the model to attend to previous tokens
in the sequence but prevents it from accessing future tokens by using a causal attention mask.

• Feed-forward Neural Network: This component processes the outputs of the attention
mechanism through a sequence of dense layers with non-linear activations.

• Layer Normalization and Dropout: These techniques are used to stabilize training and
prevent overfitting.

At the final stage, the output is passed through a dense layer followed by a softmax activation, which
produces a probability distribution over the vocabulary for the next token.

18 1.7. Encoder transformers

1.6.4 Inference and Generation

During inference, the decoder operates autoregressively. It begins with a seed sequence (e.g., The
jaguar speeds down) and generates tokens one at a time by sampling from the predicted probabil-
ity distribution. This iterative process continues until an end-of-sequence token is generated or a
predefined maximum length is reached. In the jaguar example, starting with The jaguar, the model
might generate:

The jaguar speeds down the road, chasing a supercar.

This ability to generate coherent and contextually relevant sequences makes decoder transformers a
powerful tool for natural language generation tasks.

1.7 Encoder transformers

Encoder transformers are designed to process input sequences and generate fixed-length represen-
tations that can be used for downstream tasks such as classification, token labeling, or other natural
language understanding tasks. A prominent example of an encoder transformer is BERT (Bidirec-
tional Encoder Representations from Transformers).
The encoder transformer architecture is based on the transformer layers discussed previously. In
this model, every input token is embedded into a dense vector representation and combined with
positional embeddings to encode sequential information. The attention mechanism allows the model
to attend to all tokens in the sequence bidirectionally.
Each transformer encoder block consists of the following layers:

1. Multi-head Self-attention

• Purpose: Captures relationships between tokens in the input sequence by computing atten-
tion scores.

• Mechanism:

1. For an input sequence represented as a matrix 𝑋 ∈ ℝ𝑛×𝑑 , where 𝑛 is the sequence length
and 𝑑 is the embedding dimension:

– ComputeQuery, Key, and Value matrices:

𝑄 = 𝑋𝑊𝑄, 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉

where𝑊𝑄,𝑊𝐾 ,𝑊𝑉 ∈ ℝ𝑑×𝑑𝑘 are learnable weight matrices.

– Calculate scaled dot-product attention:

Attention(𝑄, 𝐾, 𝑉) = softmax
⎛⎜⎜⎜⎜⎝
𝑄𝐾⊤

𝑑𝑘

⎞⎟⎟⎟⎟⎠
𝑉

The content from this page has been removed

The content from this page has been removed

The content from this page has been removed

The content from this page has been removed

The content from this page has been removed

The content from this page has been removed

The content from this page has been removed

The content from this page has been removed

The content from this page has been removed

The content from this page has been removed

The content from this page has been removed

22 1.8. Encoder-Decoder Transformer

1.8 Encoder-Decoder Transformer

Bibliography

R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval, volume 463. ACM press New York,
1999.

M. Berry, S. Dumais, and G. O’Brien. Using linear algebra for intelligent information retrieval. SIAM
Review, 37(4):573–595, 1994.

G. W. Furnas, S. Deerwester, S. T. Durnais, T. K. Landauer, R. A. Harshman, L. A. Streeter, and K. E.
Lochbaum. Information retrieval using a singular value decomposition model of latent semantic
structure. In Proceedings ACM SIGIR Conference, pages 465–480, 1988.

K. Goldberg, T. Roeder, T. Gupta, and C. Perkins. Eigentaste: a constant time collaborative filtering
algorithm. Information Retrieval, 4(2):133–151, 2001.

P. Melville, R. J. Mooney, and N. R. Content-boosted collaborative filtering for improved recommen-
dations. In Proceedings AAAI Conference, pages 187–192, 2002.

R. Mooney and L. Roy. Content-based book recommending using learning for text categorization.
In Proceedings ACM DL Conference, pages 195–204, 2000.

M. F. Porter. An algorithm for suffix stripping. Program Journal, 1980.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An open architecture for
collaborative filtering on netnews. In Proccedings Conference Computer Supported Collaborative

Work, 1994.

J. Salter and N. Antonopoulos. Cinemascreen recommender agent: Combining collaborative and
content-based filtering. Intelligent Systems Magazine, 21(1):35–41, 2006.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recom-
mender system-a case study. In ACM WebKDD Workshop, 2000.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation
algorithms. In Proc. WWW Conf., pages 285–295, 2001.

