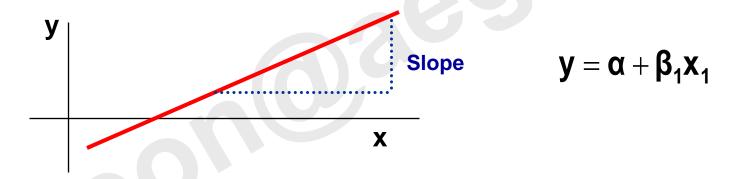
Artificial Intelligence for Medical Data with Python

10 SAMPLE SLIDES

SCHOOL OF ENGINEERING
DEPARTMENT OF INFORMATION
AND COMMUNICATION
SYSTEMS ENGINEERING

3th session – Classification Algorithms, Regression and Time Series

Presenter: Panagiotis Symeonidis


Associate Professor

http://panagiotissymeonidis.com

psymeon@aegean.gr

Simple linear regression


Relation between 2 continuous variables (SBP and age)

- α coefficient: The intercept of the line, which is the value of y when x=0 It represents the point where the line crosses the y-axis.
- β₁ coefficient : The slope of the line.
 - Amount by which y changes on average when x changes by one unit
 - It indicates how steep the line is.

Visualization of the Logistic function

Probability of the disease ranges in [0,1]

Coronary Heart Disease (CHD) Prediction Example

ABOUT PATIENTS' DATA

THE FOLLOWING FOUR ATTRIBUTES ARE COLLECTED

probability of CHD	 Dependent variable
catecholamine level (0=low, 1=high)	Independent variable
ECG (0=normal,1=abnormal)	•Independent variable
age (in years)	•Independent variable

Test the predicting power of the trained Model

Let s assume a patient with the following clinical status

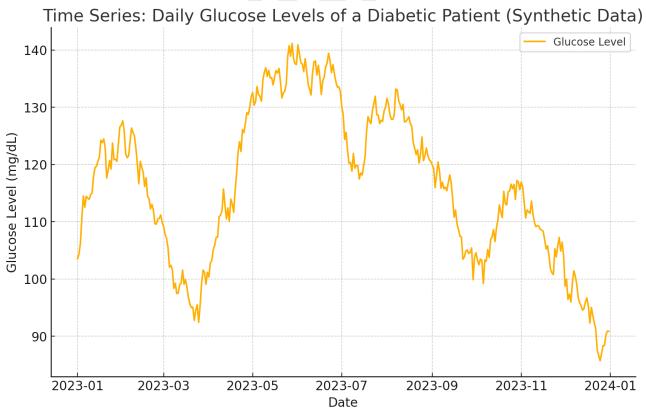
CAT = ? $\rightarrow \hat{P}(X)$ AGE = ?ECG = ?predicted risk CAT = 1AGE = 40ECG = 0

Predicting the Risk for Coronary Heart Disease

$$\hat{P}(X)$$
=\frac{1}{1 + e^{-\left[-3.911 + 0.652\left(1\right) + 0.029\left(40\right) + 0.342\left(0\right)\right]}
=\frac{1}{1 + e^{-\left(-2.101\right)}}
=\frac{1}{1 + 8.173}
= 0.1090, i.e., risk \simeq 11\%

Time Series

- A time series is a set of successive values of a characteristic over a period of time.
- Given an attribute A, a time series is the set of N observed pairs:


where

T = {1, 2, ..., n} is a sequence of successive time points for an observed value of the attribute A at time n.

Example of a time series

The collection of daily average values of glucose level of a patient for year constitutes a time series.

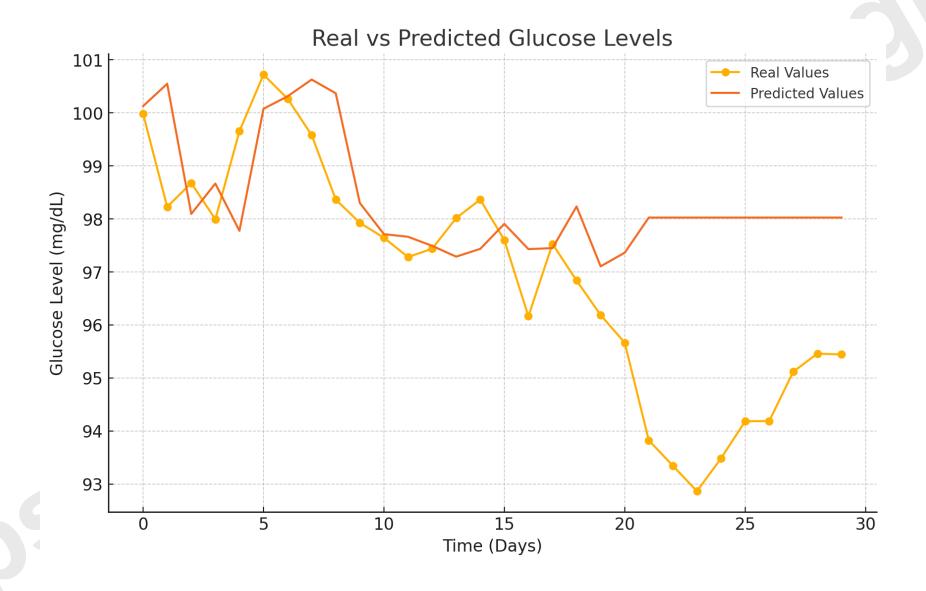
Date	Glucose Level
2023-01-01	104
2023-01-31	127
2023-03-02	108
2023-04-01	100
2023-05-01	133
2023-05-31	137
2023-06-30	133
2023-07-30	129
2023-08-29	122
2023-09-28	105
2023-10-28	114
2023-11-27	107
2023-12-27	88

Preparing Data for Random Forest Regressor

1. **Generate Synthetic Data**: We simulate daily glucose levels for a diabetic patient over one year using a random walk.

```
""python
dates = pd.date_range('2023-01-01', periods=365)
glucose_levels = np.cumsum(np.random.randn(365) * 2) + 100
data = pd.DataFrame({'Date': dates, 'Glucose Level': glucose_levels})
""
```

2. **Lag Features**: Create lagged features to use past glucose levels as predictors.


```
"python
data['Lag_1'] = data['Glucose Level'].shift(1)
data['Lag_2'] = data['Glucose Level'].shift(2)
data['Lag_3'] = data['Glucose Level'].shift(3)
data.dropna(inplace=True)
```

Original Glucose Data Date Glucose Level 1 2023-01-01 100 2 2023-01-02 105 3 2023-01-03 102 4 2023-01-04 110 5 2023-01-05 108

Lagging Example

1	2023-
data['Lag_1'] = data['Glucose Level'].shift(1)	2023-
<pre>data['Lag_2'] = data['Glucose Level'].shift(2) data['Lag_3'] = data['Glucose Level'].shift(3)</pre>	2023-
data[Lag_5] = data[Glucose Level].51111(5)	2023-

Tr	<u>↓</u>			
	Date	Glucose Level	Lag_1	Lag_2
1	2023-01-01	100		
1)	2023-01-02	105	100.0	
2 <u>)</u> 3)	2023-01-03	102	105.0	100.0
4	2023-01-04	110	102.0	105.0
5	2023-01-05	108	110.0	102.0

