Artificial Intelligence for Medical Data with Python

10 SAMPLE SLIDES

4th session – Clustering of Medical Data and Genetic Algorithms

UNIVERSITY OF THE **AEGEAN**

SCHOOL OF ENGINEERING

AND COMMUNICATION SYSTEMS ENGINEERING **Presenter:** Panagiotis Symeonidis

Associate Professor

http://panagiotissymeonidis.com

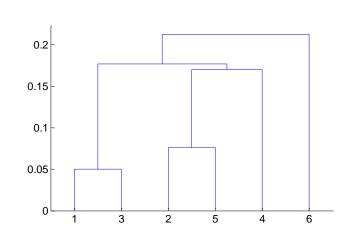
psymeon@aegean.gr

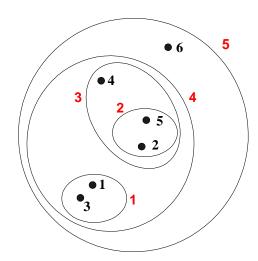
K-means Clustering

- Partitional clustering approach
- Number of clusters, K, must be specified
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple

1: Select K points as the initial centroids.

2: repeat


3: Form K clusters by assigning all points to the closest centroid.


4: Recompute the centroid of each cluster.

5: **until** The centroids don't change

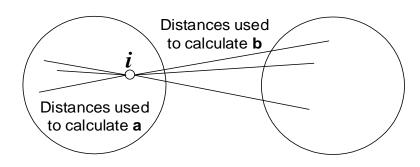
Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

DBSCAN algorithm

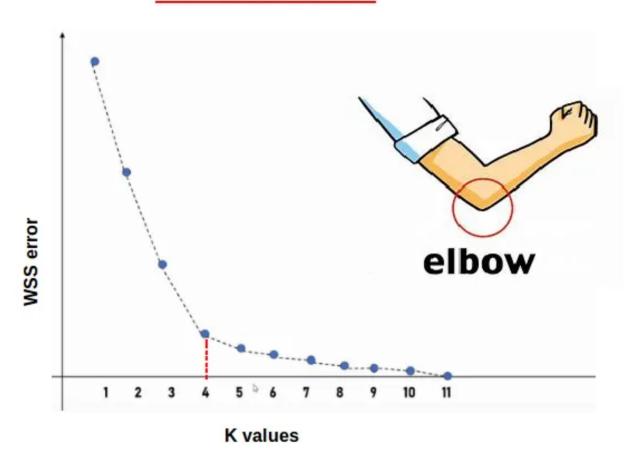
- General idea:
 - Form clusters using core points, and assign border points to one of its neighboring clusters

DBSCAN algorithm


- 1: Calculate distance matrix of points (Euclidean distance)
- 2: Based on Eps and MinPts, label all points as core, border, or noise points
- 3: Eliminate noise points
- 4: Put an edge between all core points within a distance *Eps* of each other
- 6: Make each group of connected core points into a separate cluster
- 7: Assign each border point to one of the clusters of its associated core points

Silhouette Coefficient

- Silhouette coefficient combines ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, i
 - Calculate a = average distance of i to the points in its cluster
 - Calculate b = min (average distances of i to points in all other cluster)
 - The silhouette coefficient for a point is then given by


$$s = (b - a) / max(a, b)$$

- Value can vary between -1 and 1
- Typically ranges between 0 and 1.
- The closer to 1 the better.

HOW TO DECIDE THE NUMBER OF CLUSTERS

Elbow method

Comparison: Elbow vs. Silhouette

Pros and Cons of the Elbow Method:

Pros: Simple, visual, widely applicable.

Cons: Subjective, sometimes ambiguous, computationally intensive for

large datasets.

Pros and Cons of the Silhouette Coefficient:

Pros: Quantitative, considers cohesion and separation, reduces subjectivity.

Cons: Computationally intensive, may not always be clear-cut.

5 CLUSTERS of Diabetic Patients

Cluster 0: Current Smokers with Moderate Health Risks

- Age: Approximately 44 years
- **Hypertension**: Low prevalence (7.95%)
- **Heart Disease**: Very low prevalence (3.34%)
- **BMI**: Around 28.4
- HbA1c Level: Around 5.54
- Blood Glucose Level: Around 139.5
- Diabetes: Low prevalence (9.85%)
- **Smoking History**: All individuals are current smokers

Cluster 1: Non-smokers with Low Health Risks

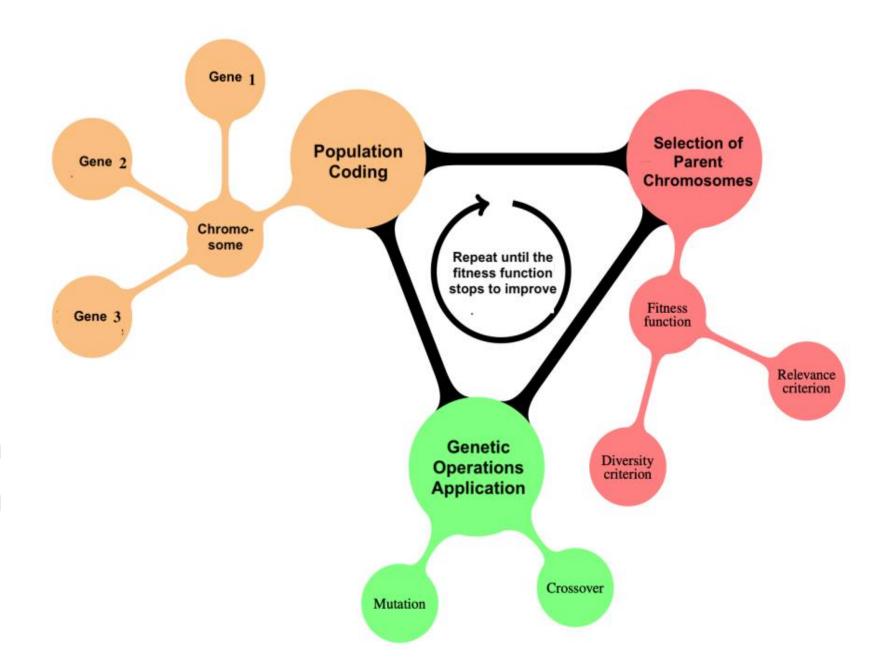
- Age: Approximately 42 years
- **Hypertension**: Very low prevalence (0%)
- Heart Disease: Very low prevalence (0%)
- BMI: Around 27.8
- **HbA1c Level**: Around 5.51
- Blood Glucose Level: Around 137.2
- **Diabetes**: Low prevalence (7.23%)
- **Smoking History**: Majority never smoked (77.41%), with some having a history of smoking

•Cluster 2: Younger Individuals with Minimal Health Issues

- Age: Approximately 32 years
- **Hypertension**: Very low prevalence (0%)
- Heart Disease: Very low prevalence (0%)
- **BMI**: Around 25.1
- HbA1c Level: Around 5.45
- Blood Glucose Level: Around 134.6
- Diabetes: Very low prevalence (3.04%)
- **Smoking History**: Majority have no information on smoking history (100%)

Cluster 3: Former Smokers with Moderate to High Health Risks

- Age: Approximately 57 years
- Hypertension: Higher prevalence (12.25%)
- **Heart Disease**: Moderate prevalence (7.53%)
- **BMI**: Around 29.6
- HbA1c Level: Around 5.64
- Blood Glucose Level: Around 142.9
- Diabetes: Higher prevalence (16.32%)
- Smoking History: All individuals are former smokers


Cluster 4: Older Individuals with High Health Risks

- Age: Approximately 64 years
- Hypertension: Very high prevalence (73.51%)
- Heart Disease: High prevalence (38.43%)
- BMI: Around 30.3
- HbA1c Level: Around 5.83
- Blood Glucose Level: Around 150.2
- Diabetes: Higher prevalence (28.29%)
- Smoking History: Mixed smoking history with a significant proportion never smoked (52.09%) and some having a history of smoking

Genetic Algorithms

- The genetic algorithms exploit important mechanisms of the natural functions of organisms
 - selection,
 - crossover,
 - mutation
- Genetic algorithms follow a search process for the optimal solution, which is guided by a fitness function, that evaluates a large number of different possible solutions.

Architecture of a genetic algorithm

