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Eigen Decomposition

* Let A be a square and diagonalizable matrix and let A be a constant
and e a column nonzero vector with the same number of rows as A.
Then A is an eigenvalue of 4 and e is the corresponding eigenvector
of A if:

A-e=A1-e

* For a matrix A of rank 7, we can group the r nonzero eigenvalues in a

r X r diagonal matrix A and their eigenvectors in a nX r matrix E. So,

we have:
A-E=FE-A

* In case that the rank r of the matrix A4 is equal to its dimension n,
then A can be factorized as:

A=E-A-E71



Principal Components Analysis (PCA)

* How can we find the direction with largest variance?
* By the eigenvector for the covariance matrix of the data

* Suppose there are 3 dimensions, denoted as X, Y, Z. The covariance matrix is

cov(X,X) cov(X,Y) cov(X,Z)
coVv = |cov(Y,X) cov(Y,Y) cov(Y,Z)
cov(Z,X) cov(Z,Y) cov(Z,Z)

where

LG =0 — )
N-1

cov(X,Y) =

where N is the number of the observations.

* Note the diagonal is the covariance of each dimension with respect to itself, which is just

the variance of each random variable
 Also, cov(X,Y) = cov(Y, X), hence matrix is symmetric about the diagonal

* d-dimensional data will result in a d x d covariance matrix



PCA steps

» Centering Data

» Calculation of the covariance matrix of
v'drugs,
v'side effects
v diseases

» Application of PCA to the covariance matrix
v’ calculation of eigenvalues
v’ calculation of eigenvectors

» Finding the highest eigenvalues together with their eigenvectors

> Data Visualization



Toy Example

Question: Can we bring to the surface the latent associations
between the adverse side effects of drug-drug interactions?

mm Anticoangulants | Hypoglykemia | Bleeding

Diabetes
2 366 8 274 1 Diabetes
3 145 10 119 3 Diabetes
4 138 8 112 4 Diabetes
5 32 360 28 350 Heart
6 22 358 11 352 Heart
7 11 112 2 102 Heart

8 13 113 3 100 Heart
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Toy Example

Insulin €2 side effect of Hypoglycemia
side effect of
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Diabetes
Diabetes
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Heart
Heart

Heart

Anticoagulants <>
Bleeding

two distinct data sets:
o insulin and hypoglycemia

o anticoagulants and bleeding

The steps to perform the PCA are as

follows:
1. Calculation
matrix

of

covariance

2. Calculation of the eigenvalues —

eigenvectors
3. Selection
components

of

principal
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Covariance Matrix Computations

224.125
230.125
9.125
2.125
-103.875
-113.875
-124.875
-122.875

1St
eigenvector

-0.499443
0.551398
-0.383077
0.547511

-113.25
-114.25
-112.25
-114.25
237.75
235.75
-10.25
-9.25

167.625
171.625
16.625
9.625
-74.375
-91.375
-100.375
-99.375

znd

eigenvector

0.622078
0.441734
0.465651
0.448396

-112.25
-113.25
-111.25
-110.25
235.75
237.75
-12.25

-14.25

From the example table:
» from the 4 columns > centered covariance
matrix

Application of PCA - calculating the
eigenvalues and eigenvectors

The first 2 eigenvectors of the covariance matrix
in our example are shown in the table below

In a horizontal scatter plot we plot the values of
the first principal component

o
PCAL




L New dimensional space

-300.074613 -117.121182 Diabetes

-305.695474 -121.814171 Diabetes
-133.736505 86.042010 Diabetes
-128.107132 94.101243 Diabetes
340534492 -111.501690 Heart *  Multiplying the centred covariance matrix by the first 2 eigenvectors gives
352.040467  -97.369043 Heart the new matrix with the new coordinates
88.478676 134.453103 Heart
86560089 133.209730 Heart * The clustering of patients after applying PCA to our example data can be
seen in the graph.
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Singular-Value Decomposition (SVD)

* SVD allows an exact representation of any matrix that

» eases the elimination of less important parts of that representation

* produces an approximate representation with any desired number of dimensions.

e The fewer the dimensions we choose, the less accurate will be
the approximation

T
A[mxn] — U[mxr]z[rxr](v[nxr])

A : Input data matrix 2. : Singular values
[m X n] matrix [ X r] diagonal matrix
(e.g., m documents, n terms) (strength of each ‘concept’)
U : Left singular vectors (7 : rank of the matrix 4)

[m X r] matrix

V : Right singular vectors
(m documents, r concepts)

[n X 1] matrix
(n terms, r concepts)



CUR Decomposition

» Goal: Express A as a product of matrices C,U,R
* Make |[|A — C - U - R||r small

* “Constraints” on C and R:
e C columns are “randomly” selected from matrix A
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