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• Let 𝑨 be a square and diagonalizable matrix and let 𝝀 be a constant 

and 𝒆 a column nonzero vector with the same number of rows as 𝑨. 

Then 𝝀 is an eigenvalue of 𝑨 and 𝒆 is the corresponding eigenvector 

of 𝑨 if:
𝐴 ∙ 𝑒 = 𝜆 ∙ 𝑒

• For a matrix 𝑨 of rank 𝒓, we can group the 𝒓 nonzero eigenvalues in a 

𝑟 × 𝑟 diagonal matrix 𝚲 and their eigenvectors in a n× 𝑟 matrix 𝑬. So, 

we have:

𝐴 ∙ 𝐸 = 𝐸 ∙ Λ

• In case that the rank 𝒓 of the matrix 𝑨 is equal to its dimension n, 
then 𝑨 can be factorized as:

𝐴 = 𝐸 ∙ Λ ∙ 𝐸−1

This diagonalization is similar to SVD, which will be described later!

Eigen Decomposition



• How can we find the direction with largest variance?

• By the eigenvector for the covariance matrix of the data 

• Suppose there are 3 dimensions, denoted as 𝑋, 𝑌, 𝑍. The covariance matrix is

𝐶𝑂𝑉 =

𝑐𝑜𝑣(𝑋, 𝑋) 𝑐𝑜𝑣(𝑋, 𝑌) 𝑐𝑜𝑣(𝑋, 𝑍)
𝑐𝑜𝑣(𝑌, 𝑋) 𝑐𝑜𝑣(𝑌, 𝑌) 𝑐𝑜𝑣(𝑌, 𝑍)
𝑐𝑜𝑣(𝑍, 𝑋) 𝑐𝑜𝑣(𝑍, 𝑌) 𝑐𝑜𝑣(𝑍, 𝑍)

where

𝑐𝑜𝑣 𝑋, 𝑌 =
σ𝑖=1

𝑁 𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦

𝑁 − 1

where N is the number of the observations.

• Note the diagonal is the covariance of each dimension with respect to itself, which is just 

the variance of each random variable

• Also, 𝑐𝑜𝑣 𝑋, 𝑌 = 𝑐𝑜𝑣 𝑌, 𝑋 , hence matrix is symmetric about the diagonal

• 𝑑-dimensional data will result in a 𝑑 × 𝑑 covariance matrix

Principal Components Analysis (PCA)
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PCA steps

➢Centering Data

➢Calculation of the covariance matrix of 
✓drugs, 
✓side effects
✓diseases

➢Application of PCA to the covariance matrix 
✓calculation of eigenvalues 
✓calculation of eigenvectors

➢Finding the highest eigenvalues together with their eigenvectors

➢Data Visualization
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Toy Example 

Question: Can we bring to the surface the latent associations 
between the adverse side effects of drug-drug interactions?

Patient Insulin Anticoangulants Hypoglykemia Bleeding Diseases

1 360 9 270 2 Diabetes

2 366 8 274 1 Diabetes

3 145 10 119 3 Diabetes

4 138 8 112 4 Diabetes

5 32 360 28 350 Heart

6 22 358 11 352 Heart

7 11 112 2 102 Heart

8 13 113 3 100 Heart
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Toy Example 
• Insulin   side effect of Hypoglycemia 
• Anticoagulants  side effect of 

Bleeding

• two distinct data sets:
o insulin and hypoglycemia
o anticoagulants and bleeding

• The steps to perform the PCA are as 
follows:

1. Calculation of covariance 
matrix

2. Calculation of the eigenvalues – 
eigenvectors

3. Selection of principal 
components

Pati
ent

Insu
lin

Anticoan
gulants

Hypogly
kemia

Blee
ding

Diseases

1 360 9 270 2 Diabetes

2 366 8 274 1 Diabetes

3 145 10 119 3 Diabetes

4 138 8 112 4 Diabetes

5 32 360 28 350 Heart

6 22 358 11 352 Heart

7 11 112 2 102 Heart

8 13 113 3 100 Heart
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Covariance Matrix Computations
• From the example table:

➢ from the 4 columns → centered covariance 
matrix

• Application of PCA → calculating the 
eigenvalues and eigenvectors

• The first 2 eigenvectors of the covariance matrix 
in our example are shown in the table below 

• In a horizontal scatter plot we plot the values of 
the first principal component

Α/Α Insulin Anticoangulants Hypoglykemia Bleeding

1 224.125 -113.25 167.625 -112.25

2 230.125 -114.25 171.625 -113.25

3 9.125 -112.25 16.625 -111.25

4 2.125 -114.25 9.625 -110.25

5 -103.875 237.75 -74.375 235.75

6 -113.875 235.75 -91.375 237.75

7 -124.875 -10.25 -100.375 -12.25

8 -122.875 -9.25 -99.375 -14.25

1st 
eigenvector

2nd 
eigenvector

-0.499443 0.622078

0.551398 0.441734

-0.383077 0.465651

0.547511 0.448396
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New dimensional space

• Multiplying the centred covariance matrix by the first 2 eigenvectors gives 
the new matrix with the new coordinates 

• The clustering of patients after applying PCA to our example data can be 
seen in the graph. 

1st Pr. Comp. 2nd Pr. Comp. Diseases

-300.074613 -117.121182 Diabetes

-305.695474 -121.814171 Diabetes

-133.736505 86.042010 Diabetes

-128.107132 94.101243 Diabetes

340.534492 -111.501690 Heart

352.040467 -97.369043 Heart

88.478676 134.453103 Heart

86.560089 133.209730 Heart



• SVD allows an exact representation of any matrix that
• eases the elimination of less important parts of that representation

• produces an approximate representation with any desired number of dimensions.

• The fewer the dimensions we choose, the less accurate will be 

the approximation

Definition

Singular-Value Decomposition (SVD)

𝑨 𝒎×𝒏 = 𝑼 𝒎×𝒓  𝒓×𝒓 𝑽 𝒏×𝒓
𝑻

𝑨 : Input data matrix
𝒎 × 𝒏  matrix 

(e.g., m documents, n terms)
𝑼 : Left singular vectors 

𝒎 × 𝒓  matrix 
(m documents, r concepts)

 : Singular values
𝒓 × 𝒓  diagonal matrix 

(strength of each ‘concept’) 
(𝒓 : rank of the matrix 𝑨)

𝑽 : Right singular vectors
𝒏 × 𝒓  matrix 

(𝒏 terms, 𝒓 concepts)



• Goal: Express A as a product of matrices C,U,R
• Make 𝐴 − 𝐶 · 𝑈 · 𝑅 𝐹  small

• “Constraints” on C and R:
• C columns are “randomly” selected from matrix A

CUR Decomposition

A C U R
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