Artificial Intelligence for Medical Data with Python

10 SAMPLE SLIDES

UNIVERSITY OF THE **AEGEAN**

SCHOOL OF ENGINEERING

DEPARTMENT OF INFORMATION
AND COMMUNICATION
SYSTEMS ENGINEERING

5th session – Matrix Factorization for Health Data (Chapter 11 of MMDS book)

Presenter: Panagiotis Symeonidis

Associate Professor

http://panagiotissymeonidis.com

psymeon@aegean.gr

Eigen Decomposition

• Let A be a square and diagonalizable matrix and let λ be a constant and e a column nonzero vector with the same number of rows as A. Then λ is an eigenvalue of A and e is the corresponding eigenvector of A if:

$$A \cdot e = \lambda \cdot e$$

• For a matrix ${\bf A}$ of rank ${\bf r}$, we can group the ${\bf r}$ nonzero eigenvalues in a $r \times r$ diagonal matrix ${\bf \Lambda}$ and their eigenvectors in a n $\times r$ matrix ${\bf E}$. So, we have:

$$A \cdot E = E \cdot \Lambda$$

• In case that the rank r of the matrix A is equal to its dimension n, then A can be factorized as:

$$A = E \cdot \Lambda \cdot E^{-1}$$

This diagonalization is **similar to SVD**, which will be described later!

Principal Components Analysis (PCA)

- How can we find the direction with largest variance?
 - By the eigenvector for the covariance matrix of the data
 - Suppose there are 3 dimensions, denoted as X, Y, Z. The covariance matrix is

$$COV = \begin{bmatrix} cov(X,X) & cov(X,Y) & cov(X,Z) \\ cov(Y,X) & cov(Y,Y) & cov(Y,Z) \\ cov(Z,X) & cov(Z,Y) & cov(Z,Z) \end{bmatrix}$$

where

$$cov(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{N-1}$$

where N is the number of the observations.

- Note the diagonal is the covariance of each dimension with respect to itself, which is just the variance of each random variable
- Also, cov(X,Y) = cov(Y,X), hence matrix is symmetric about the diagonal
- d-dimensional data will result in a $d \times d$ covariance matrix

PCA steps

- ➤ Centering Data
- ➤ Calculation of the covariance matrix of
 - √ drugs,
 - ✓ side effects
 - ✓ diseases
- ➤ Application of PCA to the covariance matrix
 - ✓ calculation of eigenvalues
 - √ calculation of eigenvectors
- > Finding the highest eigenvalues together with their eigenvectors
- > Data Visualization

Toy Example

Question: Can we bring to the surface the latent associations between the adverse side effects of drug-drug interactions?

Patient	Insulin	Anticoangulants	Hypoglykemia	Bleeding	Diseases
1	360	9	270	2	Diabetes
2	366	8	274	1	Diabetes
3	145	10	119	3	Diabetes
4	138	8	112	4	Diabetes
5	32	360	28	350	Heart
6	22	358	11	352	Heart
7	11	112	2	102	Heart
8	13	113	3	100	Heart

Toy Example

Pati ent	Insu lin	Anticoan gulants	Hypogly kemia	Blee ding	Diseases
1	360	9	270	2	Diabetes
2	366	8	274	1	Diabetes
3	145	10	119	3	Diabetes
4	138	8	112	4	Diabetes
5	32	360	28	350	Heart
6	22	358	11	352	Heart
7	11	112	2	102	Heart
8	13	113	3	100	Heart

- Insulin ↔ side effect of Hypoglycemia
- two distinct data sets:
 - o insulin and hypoglycemia
 - o anticoagulants and bleeding
- The steps to perform the PCA are as follows:
 - 1. Calculation of covariance matrix
 - 2. Calculation of the eigenvalues eigenvectors
 - 3. Selection of principal components

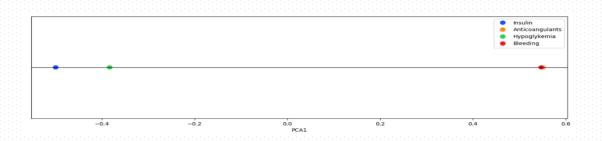
Covariance Matrix Computations

- From the example table:
 - ➤ from the 4 columns → centered covariance matrix

A/A	Insulin	Anticoangulants	Hypoglykemia	Bleeding
1	224.125	-113.25	167.625	-112.25
2	230.125	-114.25	171.625	-113.25
3	9.125	-112.25	16.625	-111.25
4	2.125	-114.25	9.625	-110.25
5	-103.875	237.75	-74.375	235.75
6	-113.875	235.75	-91.375	237.75
7	-124.875	-10.25	-100.375	-12.25
8	-122.875	-9.25	-99.375	-14.25

- Application of PCA → calculating the eigenvalues and eigenvectors
- The first 2 eigenvectors of the covariance matrix in our example are shown in the table below
- In a horizontal scatter plot we plot the values of the first principal component

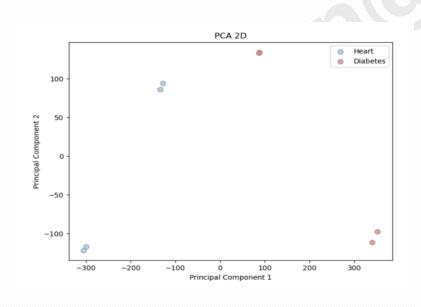
1 st	2 nd	
eigenvector	eigenvector	
-0.499443	0.622078	
0.551398	0.441734	
-0.383077	0.465651	
0.547511	0.448396	

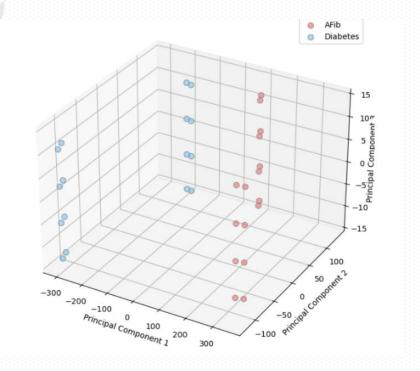


1st Pr. Comp. 2nd Pr. Comp. Diseases -300.074613 -117.121182 Diabetes -305.695474 -121.814171 Diabetes -133.736505 86.042010 Diabetes -128.107132 94.101243 Diabetes 340.534492 -111.501690 Heart 352.040467 -97.369043 Heart 88.478676 134.453103 Heart 86.560089 133,209730 Heart

New dimensional space

- Multiplying the centred covariance matrix by the first 2 eigenvectors gives the new matrix with the new coordinates
- The clustering of patients after applying PCA to our example data can be seen in the graph.





Singular-Value Decomposition (SVD)

- SVD allows an exact representation of any matrix that
 - eases the elimination of less important parts of that representation
 - produces an approximate representation with any desired number of dimensions.
- The fewer the dimensions we choose, the less accurate will be the approximation

Definition

$$A_{[m \times n]} = U_{[m \times r]} \Sigma_{[r \times r]} (V_{[n \times r]})^{T}$$

```
A: Input data matrix
```

 $[m \times n]$ matrix (e.g., m documents, n terms)

U: Left singular vectors

 $[m \times r]$ matrix (m documents, r concepts)

Σ : Singular values

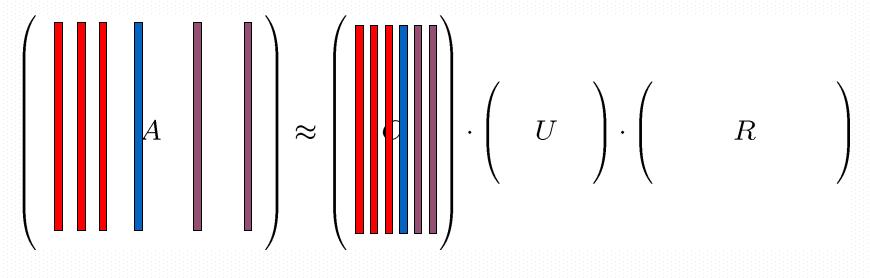
 $[r \times r]$ diagonal matrix (strength of each 'concept') (r: rank of the matrix A)

V: Right singular vectors

 $[n \times r]$ matrix (n terms, r concepts)

CUR Decomposition

- Goal: Express A as a product of matrices C,U,R
 - Make $||A C \cdot U \cdot R||_F$ small
- "Constraints" on C and R:
 - C columns are "randomly" selected from matrix A



A C U R