Artificial Intelligence for Medical Data with Python

9 SAMPLE SLIDES

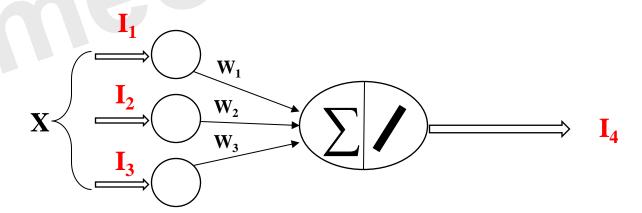
6th session – Machine learning algorithms for Image Processing and other complex medical signals

UNIVERSITY OF THE AEGEAN

SCHOOL OF ENGINEERING

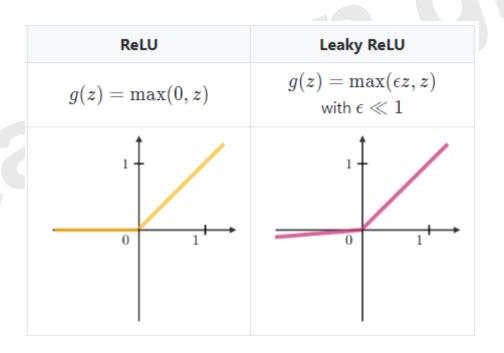
DEPARTMENT OF INFORMATION AND COMMUNICATION SYSTEMS ENGINEERING **Presenter:** Panagiotis Symeonidis

Associate Professor


http://panagiotissymeonidis.com

psymeon@aegean.gr

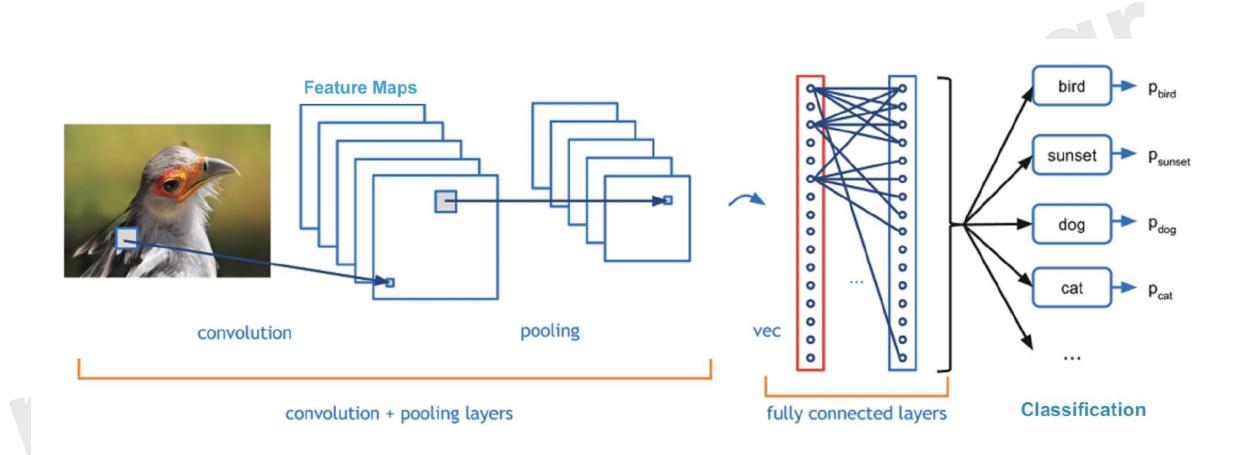
Single-Layer Perceptron for Item-based Collaborative Filtering


Predict whether patient U₄ needs Drug I4

	I ₁	l ₂	l ₃	I ₄
U_1	4	1	1	4
U_2	1	4	2	0
U_3	2	1	4	5
U ₄	1	4	1	?

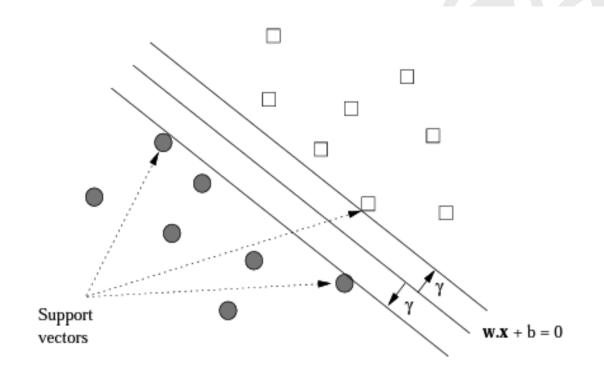
Activation Functions

Sigmoid	Tanh
$g(z)=rac{1}{1+e^{-z}}$	$g(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$
$\frac{1}{2}$ -4 0 4	

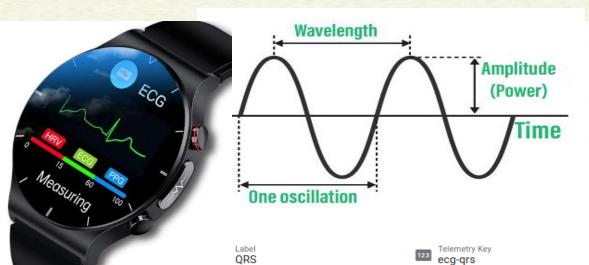


3

Pros and Cons of Activation Functions


Properties	Sigmoid	Tanh	ReLU	Leaky ReLU
Continuous	yes	yes	Except at x=0	yes
Differentiable	yes	yes	Except at x=0	yes
Pros	Outputs in bounded range Smooth	 Outputs in bounded range Smooth Symmetric around origin Zero-centered output 	 Fast Sparsity Avoids vanishing gradient Ideal for deep architectures 	FastSparsityAllowsrecovery of dead neurons
Cons	 Saturates as we move away from 0 (vanishing gradient) Computationally expensive Lack of zerocentered output 	 Saturates as we move away from 0 (vanishing gradient) Computationally expensive 	 Unbounded output's range (exploding gradients) Less smooth Lack of zerocentered output Zero gradient for very negative inputs (dying ReLU) 	 Unbounded output's range (exploding gradients) Needs one more parameters

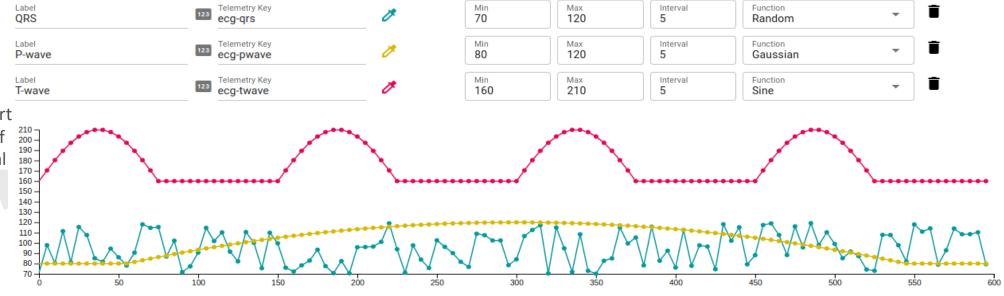
Example of a Convolutional Neural Network


Support Vector Machines

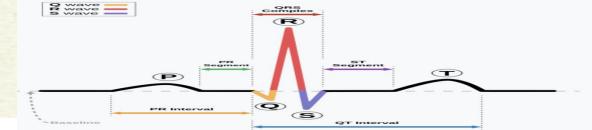
• The goal of a Support Vector Machine (SVM) is to select a hyperplane $w \cdot x + b = 0$ that maximizes the distance γ between the hyperplane and any point of the training set.

With a large margin, we are more certain to correctly classify points that are in the full data set and not only the training set

Heart Failure Prediction

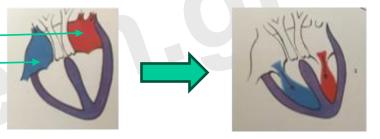

Parameter	Normal Range	
ECG QRS width/amplitude	60-110msec/≤1mV	
ECG P-wave width/amplitude	80-110ms/≤0.1mV	
ECG T-wave width/amplitude	160-200ms/≤0.25mV	

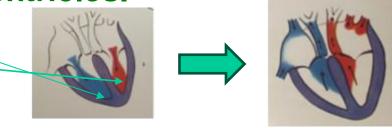
+ Output


Function

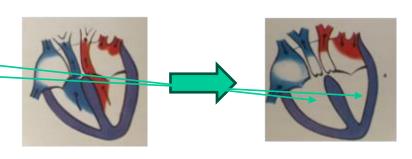
ThingsBoard Device A...

A doctor observes a graph that shows the electrical activity (in volts) of the heart of a patient over a period of time (in seconds). Each local maximum of 0.004 volts corresponds to one heartbeat.


What are the main signals of ECG (Electrocardiogram)?

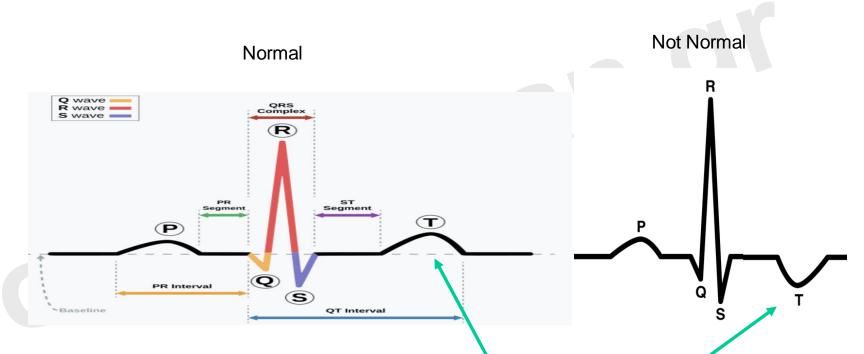

There are three main components to an ECG:

Heart movements


1. The P wave represents depolarization of the atria.

2. The QRS complex represents depolarization of the ventricles.

3. The T wave represents repolarization of the ventricles.


Detection Example of Ischemic Heart Failure

Heart failure:

Ischemia, heart attack and angina pectoris.

Cardiac arrhythmias: –
Tachycardia,
bradycardia,
ventricular fibrillation,
atrial fibrillation,
atrial flutter.

Cardiac arrest arrest

Ischemia happens when we have a narrowing of a large coronary artery. It causes a decrease in blood flow.

Can be found by changes in T wave. T is negative and symmetrical in the leads that are normally positive.