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Single-Layer Perceptron for Item-based Collaborative Filtering
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Pros and Cons of Activation Functions
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(vanishing
gradient)

* Computationally
expensive
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* Less smooth

* Lack of zero-
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ReLU)

Properties Sigmoid Tanh RelLU Leaky RelLU
Continuous yes yes Except at x=0 yes
Differentiable yes yes Except at x=0 yes
Pros * Qutputs in * Qutputsin * Fast * Fast
bounded range bounded range » Sparsity » Sparsity
* Smooth * Smooth * Avoids * Allows
* Symmetric vanishing recovery of
around origin gradient dead neurons
« Zero-centered * Ideal for deep
output architectures
Cons * Saturates as we  Saturates as we » Unbounded » Unbounded

output’s range

* (exploding
gradients)

* Needs one more
parameters




Example of a Convolutional Neural Network
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Support Vector Machines

* The goal of a Support Vector Machine (SVM) is to select a
hyperplane w - x + b = 0 that maximizes the distance y
between the hyperplane and any point of the training set.

With a large margin, we are
more certain to correctly
classify points that are in the
full data set and not only the
training set




Heart Failure Prediction
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What are the main signals of ECG
(Electrocardiogram)?

®* There are three main components to an ECG:

1. The P wave represents depolarization of the atria.




Detection Example of Ischemic Heart Fallure

Not Normal

R

Heart failure:
Ischemia, heart attack and
angina pectoris.

Cardiac arrhythmias: —
Tachycardia,
bradycardia,
ventricular fibrillation, Ischemia happens when we have a narrowing of a large

atrial fibrillation, coronary artery. It causes a decrease in lbtood flow.
atrial flutter.

Cardiac arrest Can be found by changes in T wave. T Is negative and
arrest symmetrical in the leads that are normally positive.
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